Analysis on travel insurance customers

Background

Here I analyse a dataset on 1987 travel insurance customers (source) with information such as annual income, age, whether or not they have chronic diseases, they are frequent flyers, etc.

The analysis covers data manipulation and visualisation, supervised machine learning in classification and model evaluation by using Python.

I will use pandas, scipy and numpy for data manipulation and exploration, matplotlib and seaborn for data visualisation, scikit-learn, sklearn_pandas and xgboost for classification machine learning, and hyperopt for model tuning.

Exploring the data

No missing data is present in the dataset, and they all seem to fall within reasonable ranges.

I will recode the GraduateOrNot, FrequentFlyer and EverTravelledAbroad columns with 1 being Yes and 0 otherwise.

Below are summary statistics of the customer base. Most have college degrees, work in the private sector or are self-employed, and are relatively young on average since the maximum age was only 35 in the dataset. Note that the findings of this analysis may not generalise well beyond this age range, and more data should be collected for more diverse ages in the future.

Only one-fourth of customers have chronic diseases, whereas frequent and first-time travellers each occupy one-fifth of the customers, and about one-third have bought travel insurance.

Below are the overall distributions of each numerical features in the dataset drawn with violin plots. The age of the customers seems to peak about 28 years old, their amounts of annual income mainly lie between 0.5 and 1.5 million USD, and most have 3 to 5 members in their families.

How different are the customers who have and have not bought insurance?

In terms of numerical features, it seems that significant differences do exist between customers who bought travel insurance and those who did not according to the kruskal-wallis test which gauges whether the median of two (or more) groups for a given feature is different.

From the violin plots below, we can see that customers who did not buy travel insurance tend to be relatively younger, whereas those who bought travel insurance on average have higher annual income and more family members.

As for the categorical features, we can use the chi-squared test to see if the occurrences of customers' purchase of travel insurance and a given feature are independent of each other. According to the results with $\alpha$=0.05, only the differences in EverTravelledAbroad, FrequentFlyer and EmploymentType are statistically significant, meaning there are significant differences between customers who bought and did not bought travel insurance on these features.

Following up on these results with visualisation in count plots, it seems that a customer is more likely to buy travel insurance given he/she is working in the private sector, flies frequently and/or has previously travelled abroad.

Building a model to predict whether someone will buy travel insurance

Building the baseline model

I first split the data into train and test sets for model validation later on. The test set will be one-third of the total observations.

Preprocessing needed for this dataset includes standardising the numeric features and one-hot encoding the EmploymentType feature.

Then I will first fit a few models with their default hyperparameters and then compare their accuracy and ROC AUC scores to see which one is performing better on predicting whether a customer purchased travel insurance based on the available features. The log loss is also computed for future model comparisons.

It seems that with the default hyperparameter settings, the SVM and XGBoost models perform better on the test data vis-a-vis the logit model. Let's move on with these two models for the rest of the analysis.

Improving model performance through feature engineering and selection

Feature engineering

Let's now try to improve the model's performance by creating new features to see if the model can perform better. Firstly, it may be the case that families whose members have more income per capita are more likely to buy insurance since they have more disposable income. Also, let's see if separating the customers into 4 distinct income groups (low, middle-low, middle-high, high) according to the quartiles may also bring more information to the model for better prediction.

These two new features seem to improve both models' log losses. As for the other metrics, the SVM's accuracy decreased marginally while also having a rise in its ROC AUC score, whereas the XGBoost model has its ROC AUC score improved.

Feature Selection

By looking at the permutation importance which gauges how much shuffling a feature will affect its accuracy, we can see that the XGBoost and SVM models put rather different emphases on which features contributed the most to their respective model fit. We can also start removing features that contributed the smallest magnitude to the permutation importance.

From below, even dropping the most insignificant feature ChronicDiseases increased the SVM model's log loss, so I will keep all the features for this model.

Meanwhile, removing ChronicDiseases, FrequentFlyer, EverTravelledAbroad and IncomeGroup yielded a better performance in accuracy and log loss for the XGBoost model.

Finding the best model through hyperparameter tuning

Let's now proceed to hyperparameter tuning with these more parsimonious models. I will use bayesian optimisation to tune the hyperparameters of the SVM and XGBoost models with the hyperopt package. Let's start with the SVM model first.

After tuning the gamma and C hyperparameters, the SVM model only performs marginally better than with the default hyperparameter settings.

Now I will tune the hyperparameteres of the XGBoost model with hyperopt as well.

After tuning its hyperparameters, the XGBoost model now outperforms the SVM in every metric of evaluation. Specifically, the XGBoost model now has an accuracy of 0.8415 and an ROC AUC score of 0.8271. Its log loss is also lower than that of the SVM model. Let's look deeper into the XGBoost model in the next section.

Looking deeper into the XGBoost model

Starting with the classification report, by looking at the recall per label, we can see that the model is much better at correctly predicting customers who did not buy insurance than those who did. Consistent with this observation, the confusion matrix also shows that the model produces quite a lot of false negative predictions (i.e. predicting customers did not buy insurance while in reality they actually did so).

Finally, it is worth seeing which features now contribute more to the model's fit. We can judge by the gain which measures the contribution of each feature to its accuracy. From the plot below, AnnualIncome, FamilyMembers, and Age of the customers are some of the more important features. Future promotions should develop strategies based on these characteristics.

Limitations

Even though the XGBoost model has achieved a rather high accuracy of 84.15%, cautions are warranted for generalisation. This is because the age of the customers are concentrated between 25 and 35 years old, meaning that the age groups in this data set are far from representative for the whole population (especially for the older customers). Nevertheless, this analysis can still help inform which types of customers aged between 25 and 35 years old should be targeted for travel insurance promotion campaigns.

Moreover, the XGBoost model's high amount of false negative might be a signal that more information of the customers should be collected to better identify those who would be likely to buy travel insurance. Some features could be whether they travel alone frequently, whether they previously have had accidents while travelling overseas etc.

oaEZ9j1y5Mhjz1emTBnTHH5+fqpevbo8PDwee9xHsXjxYi1atEjTp0+Xvb29bty4oU6dOilHjhxq1aqV9u7dqxo1amRKbAAAAAAAAMDzKjw8XN99951CQ0OVO3duBQYGauLEierQoYPy5s173xykJE2bNk3nz59XWFiYbGxs5O/vrwULFqhdu3by8/OTh4eHWrVqpdjYWH3wwQcqV66c3n333We0urReqoRyek6dOiV/f39FR0crZ86cGjx4sHLmzKlFixZJkhwcHFSnTh0NGjRIsbGxunLlipo1a6a+ffs+1rwhISFasWKFoqOjVb9+fbm6umrUqFG6deuWoqKi1LFjR/n4+Cg4OFiRkZE6c+aMzp8/r1atWqlbt27666+/5O/vr6SkJGXLlk1jxoxR8eLFM5xv6tSpCgwMlL29vSQpT548CgwM1M2bN7Vy5UqFh4dryJAhmjx5ssqUKfNYawMAAAAAAABeFk5OTlq/fr1sbGwUHx+vyMhIFS1aVAcOHJClpaW8vb0VHR2txo0bq1u3brKyskp1/5EjR9SsWTNly5ZNktSwYUPNnj1b7dq10wcffCAXFxdJUu7cuVWsWDFduHDhma/x3176hHK/fv3k6+urRo0a6eDBg+rdu7fWr18vLy8vSZKnp6dmz54tV1dXtWzZUrGxsapXr94TOVoeGRmptWvXytraWqNHj9ann36qd999V+fOnVPz5s1N5SiOHTum+fPnKzY2Vg0bNtRHH32kuXPnqmPHjmratKnWrl2rgwcPZphQjoqK0sWLF1WpUqVU7fdKflSqVEnLly9Xjx49SCYDAAAAAAAAD8nGxkabNm3S4MGDZWtrq169emnPnj2qXbu2+vfvrzt37sjX11e5cuVShw4dUt1bsWJFrV27Vo0bN5aNjY3CwsJ0+fJlSUpVpveXX37RgQMHNHr06Ge5tDRe6oRyXFyczp49q0aNGkmSKleurLx58+rkyZOp+nXu3Fm7du3S7Nmz9ffffysxMVG3b99+7PnLly8va+u7X4Gfn5+2b9+u6dOn69ixY7p165apX40aNWRra6sCBQooX758pqT2yJEjtX37dtWvX1+NGzfOcB5Ly7vvXjQM47FjBgAAAAAAAJBWw4YN1bBhQy1ZskSdO3fWxo0bTXk5W1tbdezYUfPmzUuTUO7SpYsmTJggLy8v5cmTRy4uLjp+/HiqPitWrNDYsWM1adIkUwWCzGKZqbNnMsMw0iRZDcNQcnJyqraxY8dq3rx5cnBwULdu3WRnZ/dEkrPZs2c3/fzZZ59p48aNKlmypD7//PNU/e4dd5ckCwsLGYahJk2aaMWKFapYsaLmzp1rqg+dnnz58snR0VHh4eGp2vfs2aPx48c/9joAAAAAAACAl9WZM2f0+++/mz57enrqwoULCg0N1V9//WVqNwzDdLj032JiYtSxY0eFhYVp/vz5srOzU7FixUz33Eskf//996pVq9bTX9ADvNQJ5Vy5csnR0VEbNmyQJB08eFBXr15VqVKlZGVlpaSkJEnSjh071LlzZzVt2lQXL15UZGSkUlJSnmgsO3bsUK9evdSwYUPt3btXktIktv/ts88+06FDh+Tl5aXevXvrzz//vO/4nTt31tixY3XlyhVJd8tgjB07Vq+//rokycrK6r7zAQAAAAAAAEjrypUr6tOnj6KioiRJYWFhKlWqlE6cOKFJkyYpOTlZd+7c0fz58031kP9t8+bN8vf3l2EYiouL05w5c+Tm5iZJGj16tPbu3avly5erXLlyz3RdGXmpS15IUlBQkIYPH67g4GDZ2NgoODhYtra2qlatmgYMGKCCBQvqk08+Uf/+/ZUnTx4VKFBATk5OioiIeKJx9OzZU23btlWePHlUokQJFSlS5L5zdO3aVYMHD9a3334rKysr+fn53Xf8Nm3aKDExUZ06dTKdcm7durVatWolSapbt66GDRumwMBAvf322090bQAAAAAAAMCL6p133lHXrl3l4+MjKysr2dvba8qUKSpYsKBGjhwpNzc3JSUlqUmTJqZc3MKFCxUeHq7Ro0fL09NTf/zxh1xdXZWcnKwPP/xQTZo00cWLF/Xjjz/KwcFBHTt2NM3n4+OTqrbys2ZhUFgXjyA+Pl7h4eEaGHZc1+ISMzscAAAAAAAA4KnYF+ST2SE8U/fyfk5OTqlK8d7z0p9QfhK++OILnThxIk27s7Ozevfu/czi8Pb21o0bN9K0e3l5qU2bNs8sDgAAAAAAAAAvJhLKT8BXX32V2SFIkubNm5fZIQAAAAAAAAB4gb3UL+UDAAAAAAAAAJiPhDIAAAAAAAAAwCyUvMBjCRvokW5xbgAAAAAAAOBFEJ+YrGw2VpkdRpbBCWUAL6x9+/ZldgjAA7FPkdWxR/E8YJ8iq2OP4nnAPkVWl5l7lGRyaiSUAQAAAAAAAABmIaEMAAAAAAAAADALCWUAAAAAAAAAgFlIKAN4YVWtWjWzQwAeiH2KrI49iucB+xRZHXv02YtPTM7sEADghWWd2QHg+eY2JkTX4hIzOwwAAAAAAEz2BflkdggA8MLihDIAAAAAAAAAwCwklAEAAAAAAAAAZiGhDAAAAAAAAAAwCwllAAAAAAAAAIBZSCgDAAAAAAAAAMxCQhkAAAAAAAAAYBbrzA7gSRoxYoT279+vxMREnT17ViVLlpQk+fj4yNPTM1XfzZs368yZM+rYsWOG44WEhGjPnj0aO3ZsutePHTum/v37S5IuXryonDlzKm/evLK1tdXSpUuf0KoejqenpwoVKqRp06Y91H2xsbEaMGCAvv3226cUGQAAAAAAWUNoaKhmz54tCwsL5ciRQ4MHD1ZoaKj27t1r6hMZGalChQopLCws1b0BAQEP7BcTEyMPDw/169dPTZo0efoLAoBn6IVKKA8bNkySFBERIR8fH4WGhmbY98iRI489X5kyZUxz+Pn5qXr16vLw8HjscR/VsWPHZGNjo7/++ksXL17Ua6+9Zva9MTEx+uuvv55idAAAAAAAZL6TJ08qKChIISEhsre317Zt29SzZ09t3brV1CciIkIfffSRxo0bl+b+IUOG3LefYRgaMGCAbt68+VTXAQCZ5YVKKKfn1KlT8vf3V3R0tHLmzKnBgwcrZ86cWrRokSTJwcFBderU0aBBgxQbG6srV66oWbNm6tu372PNGxISohUrVig6Olr169eXq6urRo0apVu3bikqKkodO3aUj4+PgoODFRkZqTNnzuj8+fNq1aqVunXrpr/++kv+/v5KSkpStmzZNGbMGBUvXvyBc9auXVvR0dFasmSJevfuLUkKDg7WhQsXdOzYMV27dk2fffaZdu3apT/++ENly5bVhAkTFBAQoMuXL6t79+6aMmXKY60dAAAAAICsytbWVgEBAbK3t5ckOTk56erVq0pISJCtra0kaejQoerYsaPKlSt337HS6/ftt9+qTJkyiouLe3qLAIBM9MInlPv16ydfX181atRIBw8eVO/evbV+/Xp5eXlJulsiYvbs2XJ1dVXLli0VGxurevXqqVOnTo89d2RkpNauXStra2uNHj1an376qd59912dO3dOzZs3l4+Pj6S7J4vnz5+v2NhYNWzYUB999JHmzp2rjh07qmnTplq7dq0OHjx434RyYmKiVq1apXnz5ik6Olqff/65unfvLmvru1/x8ePHtWTJEu3fv1/t27dXWFiYihcvLhcXFx07dkxDhgyRj48PyWQAAAAAwAutaNGiKlq0qKS7p4nHjBkjZ2dnUzJ527Ztunjxory9ve87Tnr9fv31V+3du1ezZ89Whw4dntoaACAzvdAJ5bi4OJ09e1aNGjWSJFWuXFl58+bVyZMnU/Xr3Lmzdu3apdmzZ+vvv/9WYmKibt++/djzly9f3pTQ9fPz0/bt2zV9+nQdO3ZMt27dMvWrUaOGbG1tVaBAAeXLl8+U1B45cqS2b9+u+vXrq3Hjxveda9u2bSpUqJDefPNNGYYhS0tLbdmyRf/73/8kSbVr15a1tbUcHBxM/SSpcOHCiomJUa5cuR57vQAAAAAAPC9u3bolPz8/Xbp0SbNmzTK1z507V76+vrKysrrv/f/td+HCBQUGBuq777574L0A8DyzzOwAnibDMGQYRpq25OTkVG1jx47VvHnz5ODgoG7dusnOzi7NfY8ie/bspp8/++wzbdy4USVLltTnn3+eql+2bNlMP1tYWMgwDDVp0kQrVqxQxYoVNXfuXFN96IwsX75cFy9elLOzsxo0aKCbN2+aynpIko2Njenne0luAAAAAABeRhcuXJCXl5esrKz0ww8/KE+ePJKkqKgo/fHHHw98kV56/X766Sfdvn1bH3/8sdzd3RUeHq5x48Zp4cKFT3UtAPCsvdCZxVy5csnR0VEbNmwwlby4evWqSpUqpW3btik+Pl6StGPHDo0YMUJvv/22du3apcjISKWkpDzRWHbs2KF169apcOHCCgkJkaQ0ie1/++yzz9SsWTN5eXmpZMmSGjNmTIZ9r169qh07dmjjxo0qXLiwJOncuXNq0qSJzp07Z1Z81tbWSkpKeogVAQAAAADw/ImOjla7du3k4eGhHj16pLq2f/9+VahQQTlz5rzvGOn169SpU6rymd7e3vroo48emJwGgOfNC51QlqSgoCANHz5cwcHBsrGxUXBwsGxtbVWtWjUNGDBABQsW1CeffKL+/fsrT548KlCggJycnBQREfFE4+jZs6fatm2rPHnyqESJEipSpMh95+jatasGDx6sb7/9VlZWVvLz88uw76pVq1SvXj1TMlmSHB0d5ezsrMWLF6c6AZ2RAgUKyMHBQd7e3po3b97DLQ4AAAAAgOfEwoULdfHiRW3cuFEbN240tX///fc6ffq0ihQpku494eHhGj16tCRl2A8AXgYWxpOo7YCXTnx8vMLDwzUw7LiuxSVmdjgAAAAAAJjsC/LJ7BCeO/v27VPVqlUzOwwgQ+zRZ+de3s/JySndg6ov/AnlJ+GLL77QiRMn0rQ7Ozurd+/ezywOb29v3bhxI027l5eX2rRp88ziAAAAAAAAAPByIqFshq+++iqzQ5AkSlEAAAAAAAAAyFSWmR0AAAAAAAAAAOD5wAllPJawgR5mvfQPAAAAAIBnJT4xWdlsrDI7DAB4IXFCGcALa9++fZkdAvBA7FNkdexRPA/Yp8jq2KPPHslkAHh6SCgDAAAAAAAAAMxCQhkAAAAAAAAAYBYSygAAAAAAAAAAs5BQBgAAAAAAAACYhYQygBdW1apVMzuELCc+MTmzQwAAAAAAAM8x68wOAM83tzEhuhaXmNlhADDTviCfzA4BAAAAAAA8xzihDAAAAAAAAAAwCwllAAAAAAAAAIBZSCgDAAAAAAAAAMxCQhkAAAAAAAAAYBazE8ojRoyQu7u7XFxc5OTkJHd3d7m7u2v58uVp+m7evFlz5sy573ghISHy8/Mza+5evXrJzc3N3FBT8fb2NqvfypUr5enpKXd3d7m5uemHH34wXXN2dlZERMQjzW+uqKgoDRw4UI0bN5abm5s6d+6so0ePpun3559/ysnJyawxz507p549e6px48ZydXVVr1690l3HgAEDFBIS8thrAAAAAAAAAPBisza347BhwyRJERER8vHxUWhoaIZ9jxw58viR/X/Xr1/Xn3/+qYIFC2rfvn2qWrXqQ92/Z8+eB/ZZvHixFi1apOnTp8ve3l43btxQp06dlCNHDrVq1epRQzdbQkKCfHx81Lx5c3355ZeysLDQjh071KlTJy1cuFDFixeXJN2+fVsjR45UYmLiA8eMiopS27Zt1b9/fwUHB0uSQkND1bZtW4WGhsrOzk6RkZEaNmyYdu7cqRo1ajzNJQJ4TqxcuTLVLwRjY2MVGRmpbdu2qWDBgqb2rVu36quvvlJCQoLKlCmjL7/8Urly5Uo1Vo8ePWRvby9/f/9nFj8AAAAAAHi6zE4op+fUqVPy9/dXdHS0cubMqcGDBytnzpxatGiRJMnBwUF16tTRoEGDFBsbqytXrqhZs2bq27ev2XOEhYXpnXfeUenSpbV48WJTQjkkJERbt27V5cuXdenSJbVv314XLlzQrl27lC9fPs2aNUtBQUGSpFatWmnp0qUZzjF16lQFBgbK3t5ekpQnTx4FBgbq5s2bpj5TpkzR0aNHdfv2bY0bN06VKlWSt7e3KlSooH379ikqKkpDhgxRvXr1dOnSJfXt21cxMTEqXbq09u7dq19++SXD+detW6dXXnlFvr6+prbatWurZcuWmjVrlgICAiRJY8eOVYcOHXTgwIEHPrdFixapWrVqqU52u7u7a/PmzVq0aJG6deumsLAwNWjQQPny5XvgeABeDi1atFCLFi0kSYmJiWrXrp18fX1TJZPv/UXFvV94BQUFafz48Ro+fLipz8yZM/X777/LxcXlGa8AAAAAAAA8TY9VQ7lfv37y9vZWWFiYBg4cqN69e6tYsWLy8vKSl5eXPD09tXr1arm6umrJkiVatWqVFixYoKioKLPnCAkJUdOmTdW0aVOtX79e0dHRpmuHDx/WrFmzNH/+fI0dO1bvvfeewsLCJEnbt2/XkCFDJOm+yeSoqChdvHhRlSpVStVesmTJVG1vvvmmVq5cKW9vb82ePdvUnpiYqMWLF2vgwIGaOHGiJGn06NFq2rSpwsLC1KRJE0VGRt53jYcPH1aFChXStFevXl1//PGHJOnnn3/WnTt31KRJk/uOdc+hQ4dUsWLF+4758ccfP5MT2ACeTzNnzlT+/Pnl5eWVqv3XX39VhQoVTH890aZNG4WFhckwDEnSrl27tH379jT3AQAAAACA598jJ5Tj4uJ09uxZNWrUSJJUuXJl5c2bVydPnkzVr3Pnznrttdc0e/ZsjR49WomJibp9+7ZZcxw9elQXL15UrVq19Nprr6lcuXJauXKl6frbb7+tXLlyqUiRIpKkd999V5JUpEgR3bhxw6w5LC3vPoJ7iZCMNGzYUNLdxPL169dN7XXr1pUklSpVypTs3rFjh9zd3SVJ//vf/5QnTx6zYvmvO3fuKCUlRVeuXNHUqVM1dOjQRxonvTEB4H6ioqI0Z84cDRo0KM21S5cu6dVXXzV9fvXVV3Xz5k3FxcUpMjJSo0eP1vjx42VlZfUsQwYAAAAAAM/AIyeUDcNIk4Q1DEPJycmp2saOHat58+bJwcFB3bp1k52d3QOTt/csX75cCQkJaty4sZydnXXq1ClTOQ1JsrGxSdXf2vrhK3jky5dPjo6OCg8PT9W+Z88ejR8/3vT5XmLEwsIiVb9s2bKlabeysjJ7jZLk5OSkQ4cOmT5fu3ZNkvTHH3/IyclJW7duVXR0tD766CNTotrd3T1VSY7/qlChgukkcnpjAsD9LFmyRA0aNJCjo2Oaaxn9UsowDPXp00eDBg0ylRACAAAAAAAvlkdOKOfKlUuOjo7asGGDJOngwYO6evWqSpUqJSsrKyUlJUm6e1q3c+fOatq0qS5evKjIyEizTsgmJCQoLCxM33//vTZv3qzNmzfr559/1pUrV7R7926z4/x3LBnp3Lmzxo4dqytXrki6ezJv7Nixev31182e599q1aplKr2xbdu2B56WdnFx0e3btzVz5kwZhqFp06apffv2Wr58uaksxaZNmxQaGmp6GWJoaGiaF2D9W5s2bbRv3z5THMOGDVPnzp21f/9+tW3b9pHWBeDlsXbtWnl4eKR77bXXXjP991KSIiMjlTdvXp04cUIREREaO3as3N3dtWjRIq1du1aDBw9+VmEDAAAAAICn7LFeyhcUFKThw4crODhYNjY2Cg4Olq2trapVq6YBAwaoYMGC+uSTT9S/f3/lyZNHBQoUkJOTkyIiIh449pYtW1SkSJFUdYxz5cqlVq1aadGiRaZSEw/SoEEDubu7KyQkxHSa+L/atGmjxMREderUSRYWFjIMQ61bt37k+sKDBg3SgAEDtGTJEpUtW/aBJS9sbW01d+5cBQYGqnHjxrKystKrr76qokWLasuWLSpVqtRDx5A/f35TbenJkydLkt544w0VKFBAW7du1QcffPBIawPw4ouJidHZs2dVpUqVdK/XqVNHgYGBOn36tIoXL65FixapQYMGqlKlirZt22bqFxwcrOvXr8vf3/9ZhQ4AAAAAAJ4yC+NhajPALD/88INq1aqlN998U0eOHNHQoUMVEhLy0OMkJCRo586dqlev3hOL7ebNmzp8+LCp3vSjio+PV3h4uAaGHde1uMQnFB2Ap21fkM8D+xw6dEhffPGFNm7caGo7fPiwhgwZYvoriW3btumrr75SYmKiihUrpsDAQOXLly/VOCSUzbNv3z5VrVo1s8MAMsQexfOAfYqsjj2K5wH7FFkde/TZuZf3c3JySveA7mOdUH4SvvjiC504cSJNu7Ozs3r37v3E5vH29k639ISXl5fatGnzxOaRpNdff119+vSRpaWlsmXLplGjRmnt2rWaPn16uv3vJWj+y9bW9r7J5O+//14rVqxI025vb6+ZM2eme0+uXLkeO5kM4MVWsWLFVMlk6W5d9n//t6pevXoP/GVXz549n0p8AAAAAAAg82R6Qvmrr756JvPMmzfvmcwjpZ9oeeutt+Ti4vJE5+nQoYM6dOjwRMcEAAAAAAAAgIw88kv5AAAAAAAAAAAvFxLKAAAAAAAAAACzkFAGAAAAAAAAAJgl02so4/kWNtAj3bc9Asia4hOTlc3GKrPDAAAAAAAAzylOKAN4Ye3bty+zQ8hySCYDAAAAAIDHQUIZAAAAAAAAAGAWEsoAAAAAAAAAALOQUAYAAAAAAAAAmIWEMoDnVnxicmaHAAAAAAAA8FKxzuwA8HxzGxOia3GJmR0GXlL7gnwyOwQAAAAAAICXCieUAQAAAAAAAABmIaEMAAAAAAAAADALCWUAAAAAAAAAgFlIKAMAAAAAAAAAzEJCGQAAAAAAAABgFuvMDuCeESNGaP/+/UpMTNTZs2dVsmRJSZKPj488PT1T9d28ebPOnDmjjh07ZjheSEiI9uzZo7Fjx2bYx8/PT7t27VLevHklSbdv31a+fPk0ZswY0/xPQpkyZXTs2LEMr7u7uys0NPSJzRcREaEmTZqoZMmSMgxDiYmJql27tgYNGiRLy4x/h+Dn56fq1avLw8PjicUCAAAAAAAA4MWRZRLKw4YNk3Q3Gerj43PfBOuRI0ee2Ly9evVKlUAdPXq0goOD9c033zyxOR7kSSaT77G3tzeNm5iYqDZt2mj79u2qV6/eE58LyOo2bdqk/v37a//+/anaf/vtNwUGBpo+37lzR6dPn9by5cvl5OSk9evXa/r06UpISJCDg4MCAwNlZ2f3rMMHAAAAAADIMrJ0yYtTp07J29tbbm5uat26tQ4dOqQTJ05o0aJFWrRokZYvX67IyEh17txZH374oerXr6/x48c/8nwJCQm6cuWK6cTyvVPQLVu2VJs2bfTnn3/q+vXrql27thITEyVJx48fl5ubmyRp+fLlcnV1lZubm/z8/BQXF2caOykpSXXq1NHVq1clSdHR0apTp44SExNVpkwZSVJwcLCGDBkib29vOTs7a+rUqZLuJoQHDRqkxo0by8fHR+3bt9fu3bvNXld8fLwSExNNibA9e/aoTZs2atmypZydnbVu3bpHfmZAVnf69GkFBgbKMIw012rVqqXQ0FDT/8qUKSNfX185OTnp8OHDGjVqlCZNmqTVq1erePHimjBhQiasAAAAAAAAIOvIMieU09OvXz/5+vqqUaNGOnjwoHr37q3169fLy8tLkuTp6anZs2fL1dVVLVu2VGxsrOrVq6dOnTqZPcekSZP0/fffKzo6WtmyZVPDhg3VvXt3SdKAAQPk7++v8uXL68SJE+revbvWr1+vihUr6tdff1X9+vW1Zs0aNW/eXMeOHdO0adO0ZMkS2dnZacSIEZo8ebIGDBggSbK2tlaTJk30008/qV27dtqwYYMaNmwoGxubVPEcO3ZM8+fPV2xsrBo2bKiPPvpIoaGhun37tn766SdduHDBlMC+n8uXL8vd3V2GYej8+fOqVKmSypYtK0n68ccfFRAQoJIlS2rnzp368ssv1bRpU7OfGfC8iI+PV79+/eTn56e+ffvet29oaKgiIiL09ddfS5JWrVolT09PFS1aVJLUs2dPRUdHP+2QAQAAAAAAsrQse0I5Li5OZ8+eVaNGjSRJlStXVt68eXXy5MlU/Tp37qzXXntNs2fP1ujRo5WYmKjbt2+bPU+vXr20atUqff/990pMTFSNGjWUK1cuxcXFKTw8XAMHDpS7u7u++OIL3bp1S9evX5e7u7vWrFkjSVq3bp3c3Ny0d+9e1a9f33QKuHXr1tq1a1equf593+rVq9W8efM08dSoUUO2trYqUKCA8uXLp9jYWO3YsUNubm6ysLBQkSJF9O677z5wXfdKXqxatUo7d+6UnZ2dAgICJElBQUH6+++/NWXKFM2ZMyfVSWrgRTJ79my1bt3a9FcAGUlISNDXX3+tQYMGydr67u/ZTp8+reTkZHXr1k3NmzfXiBEj9MorrzyLsAEAAAAAALKsLJtQNgwjzZ+oG4ah5OTkVG1jx47VvHnz5ODgoG7dusnOzi7dP21/kDfeeEN9+/bVoEGDFBsbq5SUFNna2qb6c/ilS5cqX758cnZ21t69e7V37169+uqrevXVV5WSkpIm1qSkpFRtFSpUUExMjA4dOqTIyEi9/fbbaeLIli2b6WcLCwsZhiErK6s04z8MW1tbNW3a1FQ/tm3btjp06JCcnJzUtWvXRx4XyMrmz58vS0tLffDBBw/su379ehUrVkzvvPOOqS0pKUlbtmzRyJEjtXLlShUqVEhDhgx5miEDAAAAAABkeVk2oZwrVy45Ojpqw4YNkqSDBw/q6tWrKlWqlKysrEzJ2h07dqhz585q2rSpLl68qMjIyEdOvrq6usrR0VHffvutcufOreLFi5tebLdjxw599NFHku4maOvWrasvv/zSdMq4evXq2rx5s+lP4pcsWaIaNWqkmcPNzU3Dhg2Ti4uL2XHVqlVLa9eulWEYioyM1J49e2RhYfFQa9u1a5fKly+v6OhonT59Wr1791a9evW0Y8eONEl64EWwYsUKnTx5Uu7u7vL19dWdO3fk7u6uyMjINH3Xrl2b6uWc0t1T/nXq1FGhQoVkaWkpDw8PHTx48BlFDwAAAAAAkDVl6RrKQUFBGj58uIKDg2VjY6Pg4GDZ2tqqWrVqGjBggAoWLKhPPvlE/fv3V548eVSgQAE5OTkpIiLikefs37+/OnTooLZt25rmnzVrlmxsbDRhwgRTItfd3V2rVq1SkyZNJElly5bVJ598Im9vbyUmJuqtt97SiBEj0ozfvHlzTZw40VSn1Rwffvih/vrrL7m5ualQoUJycHBQ9uzZ73vPvRrK0t06sq+//roCAgKUL18+tWrVSs2aNVOuXLlUuXJl3blzR7du3TI7HuB5sGzZMu3bt09Vq1ZVRESE3NzcTL8g+jfDMPT7779r2LBhqdobN26swMBAde3aVXZ2dtqwYYMqVKjwrMIHAAAAAADIkiyMR6kPgWdq69atMgxD9evXV2xsrFq0aKHly5crX758mRZTfHz83RrTYcd1LS4x0+LAy21fkM/9r/8noXzgwAFFRkbK19dXM2bMUOHChRUVFaW6devqyJEjae5fsGCBFixYoJSUFDk4OGj06NEqXLjw01oOXlL39imQVbFH8TxgnyKrY4/iecA+RVbHHn127uX9nJycUpXnvSdLn1B+Er744gudOHEiTbuzs7N69+6dCRE9vJIlS6p///765ptvJN19keCNGzfUvn37dPsHBARwkhL4l6JFi+rAgQOSpMKFC6c6qZw/f/50k8nS3Xrjbdu2fSYxAgAAAAAAPA9e+ITyV199ldkhPDZHR0ctXLgwTXt6f74PAAAAAAAAAE9Lln0pHwAAAAAAAAAgayGhDAAAAAAAAAAwCwllAAAAAAAAAIBZXvgayni6wgZ6pPu2R+BZiE9MVjYbq8wOAwAAAAAA4KXBCWUAzy2SyQAAAAAAAM8WCWUAAAAAAAAAgFlIKAMAAAAAAAAAzEJCGQAAAAAAAABgFhLKALKE+MTkzA4BAAAAAAAAD2Cd2QHg+eY2JkTX4hIzOwy8APYF+WR2CAAAAAAAAHgATigDAAAAAAAAAMxCQhkAAAAAAAAAYBYSygAAAAAAAAAAs5BQBgAAAAAAAACY5Ym+lG/EiBHav3+/EhMTdfbsWZUsWVKS5OPjI09Pz1R9N2/erDNnzqhjx44ZjhcSEqI9e/Zo7Nix951369atmjZtmm7duqWUlBQ1bNhQvXr1kqWlpRYvXqxXXnlFrq6u9x3j5MmTGjdunM6fPy9JKl26tAYPHqz8+fMrODhYktSzZ88HPoPHMX/+fC1atEiSZGVlpdatW6tNmzap+iQlJemjjz5S69at5eHhcd/xkpKSNH36dK1evVrW1tbKli2bPv74YzVp0iRVvx07dmjGjBmaO3fuk10QAAAAAAAAgBfKE00oDxs2TJIUEREhHx8fhYaGZtj3yJEjT2TOX375RSNHjtTs2bNVokQJ3blzR5999pkmTZqkzz77TAcOHFD16tXvO0ZkZKR8fHw0cuRIOTs7yzAMTZ8+XT169NCCBQueSJwP8u2332rHjh2aO3eu8ufPr6ioKH366aeKiYlR165dTf2mTJmi06dPmzXmsGHDFBsbq2XLlumVV17RuXPn1KVLFyUmJsrNzU0pKSn6/vvvNX36dJUuXfoprQwAAAAAAADAi+KJJpTTc+rUKfn7+ys6Olo5c+bU4MGDlTNnTtNJXAcHB9WpU0eDBg1SbGysrly5ombNmqlv375mjT9t2jT16NFDJUqUkCRlz55dw4cP18mTJ/Xbb79p8+bN2rVrlwoVKqS6deumO8bChQtVp04dOTs7S5IsLCzUpUsXFS1aVElJSZKkQ4cOycvLS5GRkfLw8FDPnj0VEhKi7du3KyYmRufOnVPt2rU1fPhwSdJXX32l9evXy87OToUKFZKzs3OGJ4rv3LmjmTNnavny5cqfP78kKX/+/AoICFDr1q3VoUMHZc+eXfv27dOxY8dUv379Bz6XCxcuaO3atdq6dateeeUVSZKjo6MGDhyoL7/8Um5ubvrnn3/0zz//aNSoUZo3b55ZzxvIbJs2bVL//v21f//+NNfWrl2rqVOnSpLs7Oz04YcfSpICAgK0d+9eU7/IyEgVKlRIYWFhzyZoAAAAAACAF8RTTyj369dPvr6+atSokQ4ePKjevXtr/fr18vLykiR5enpq9uzZcnV1VcuWLRUbG6t69eqpU6dOZo1/9OhRVapUKVXbq6++qldffVWS5OzsrOrVq2eYTL43Rr169VK1WVlZpSqTce3aNS1atEg3b96Us7OzqVTHgQMHtHr1allZWalJkyZq06aNzp8/r3379mn16tW6ffu2WrZsaUpWp+eff/6RpaWl3njjjVTtb775pmxsbPTPP//o9ddf19ixYzV16lSNHz/+gc8lPDxcjo6Oyps3b6r2atWq6fTp04qOjlapUqU0evRo7d69+4HjAVnB6dOnFRgYKMMw0ly7evWqhg8frtDQUL322mv68ccf9f3338vV1VVDhgwx9YuIiNBHH32kcePGPcvQAQAAAAAAXghP9aV8cXFxOnv2rBo1aiRJqly5svLmzauTJ0+m6te5c2e99tprmj17tkaPHq3ExETdvn3brDksLCzSTS49DHPGqFu3rmxtbZU/f37Z2dkpJiZGklSlShXlypVLOXLkkKOjo2JiYvTbb7+padOmsrW1Vd68edWwYUOzYkhPfHy8kpOTNWLECHXt2lUFCxZ8+AX+y507dyRJKSkpjzUO8Kzdvn1b/fr1k5+fX7rXCxYsqB07dui1115TUlKSzp8/r9y5c6fpN3ToUHXs2FHlypV72iEDAAAAAAC8cJ5qQtkwjDSJWsMwlJycnKpt7NixmjdvnhwcHNStWzfZ2dmZnSR2cnJSeHh4qrZTp06pf//+ZseZ3hgpKSnq0aOHrl69Kkmytv6/w9z/TkBny5YtTbulpeVDJWxLliyp5ORk/fPPP5KkmzdvKj4+XsePH1dKSopKlCihnTt3atKkSXJ3d9fmzZs1adIkrVq16r5rOnfunKKjoyVJ0dHRSkpK0h9//CEHBwdTaQ3geeHv76/WrVurTJkyGfaxsbHR4cOHVa9ePS1ZssT0y6x7tm3bposXL8rb2/tphwsAAAAAAPBCeqoJ5Vy5csnR0VEbNmyQJB08eFBXr15VqVKlZGVlZapPvGPHDnXu3FlNmzbVxYsXFRkZaXZC9uOPP9bkyZNNL6qLi4vT2LFj9dprr0m6W7rivwns/2rdurW2bdumbdu2Sbqb9P7222917dq1RzoRXLt2bW3YsEEJCQm6efOmtm7dmuEJZOlu3WdfX1/5+/srKipK4eHh8vDwUL9+/fTxxx8rd+7c+vXXXxUaGqrQ0FA5OzurV69eat68eYZjOjg4qFmzZvL399etW7f066+/ytPTU6NHj1bPnj0fek1AZpo/f76sra31wQcfPLBvhQoVtGPHDk2YMEFBQUG6ceOG6drcuXPl6+srKyurpxkuAAAAAADAC+up11AOCgrS8OHDFRwcLBsbGwUHB8vW1lbVqlXTgAEDVLBgQX3yySfq37+/8uTJowIFCsjJyUkRERFmjf/ee+/p888/1+eff67k5GQlJSWpSZMm6tGjhySpVq1a+vrrr5U7d241adIk3TEKFSqkmTNnaty4cRo/frySk5NVvnx5TZky5ZHWXK9ePe3fv18tW7ZU3rx5ZW9vn+okc3q6deum3Llzy8fHR5JkaWmp1157TX/99ZcuXrxoSpA/jOHDh2vatGlq2bKlrK2tlS1bNhUtWlT79u1TgwYN0tRXBrKqFStW6M6dO3J3d1diYqLp5xkzZqhw4cKS7r5o7/jx46Z66e+9955y5Mihs2fPysnJSVFRUfrjjz80efLkzFwKAAAAAADAc83CeNwCxEjjwIEDOn36tFq2bKnExES1bt1aX375pcqWLfvQYx08eFBFihRRoUKFnlh8v/76q9555x1lz579kceIj49XeHi4BoYd17W4xCcWG15e+4J8zOoXEREhNzc3HThwIFX7uXPn1LJlSy1fvlyvv/66du3apc8//1ybN29Wjhw5tGnTJtOL+oCsZN++fapatWpmhwFkiD2K5wH7FFkdexTPA/Ypsjr26LNzL+/n5OSU7iHZp35C+Un44osvdOLEiTTtzs7O6t27t1ljfP/991qxYkWadnt7e82cOfOxY/y3EiVKaPLkyZozZ44Mw1CLFi1UvHhxubu7p9u/V69eatCgQbrXKleunOE8Z8+ezbB8RUBAgCpUqJDutTp16tx/AcBzIjIyUr6+vpoxY4YcHR1NJV0sLCyUJ08e9e3bVzly5JAknT59WkWKFMnkiAEAAAAAAJ5vnFDGI+GEMp40c08oP9SY/PYSzwH2KbI69iieB+xTZHXsUTwP2KfI6tijz86DTig/1ZfyAQAAAAAAAABeHCSUAQAAAAAAAABmIaEMAAAAAAAAADDLc/FSPmRdYQM90q2lAjys+MRkZbOxyuwwAAAAAAAAcB+cUAaQJZBMBgAAAAAAyPpIKAMAAAAAAAAAzEJCGQAAAAAAAABgFhLKAAAAAAAAAACzkFAG8EzFJyZndggAAAAAAAB4RNaZHQCeb25jQnQtLjGzw8BzZF+QT2aHAAAAAAAAgEfECWUAAAAAAAAAgFlIKAMAAAAAAAAAzEJCGQAAAAAAAABgFhLKAAAAAAAAAACzkFAGAAAAAAAAAJjlgQnlESNGyN3dXS4uLnJycpK7u7vc3d21fPnyNH03b96sOXPm3He8kJAQ+fn53bePn5+f3n//fdNcjRo10ocffqh//vnngfeFhITct8/AgQN1/vx5SVKXLl0UGRl53/4Pw9vbW7t3707TPnHiRP3888+PPO7KlSvl6ekpd3d3ubm56YcffnicMNN16NAhBQUFPfFxAQAAAAAAALw4rB/UYdiwYZKkiIgI+fj4KDQ0NMO+R44ceWKB9erVSx4eHqbPo0ePVnBwsL755pvHGnf37t3q3r27JGnmzJmPNZa5evfu/cj3Ll68WIsWLdL06dNlb2+vGzduqFOnTsqRI4datWr1xGI8ceKErl279sTGAx7Xpk2b1L9/f+3fvz/DPhMnTlRMTIz8/f0lSQkJCQoICNCuXbuUM2dOlS1bVlWqVJGlJX+MAQAAAAAA8CQ8Upbl1KlT8vb2lpubm1q3bq1Dhw7pxIkTWrRokRYtWqTly5crMjJSnTt31ocffqj69etr/PjxjxxkQkKCrly5orx580qSzpw5o44dO6ply5Zq06aN/vzzzzT3TJgwQR9++KEaN24sLy8vXblyRTNmzNDly5fl6+ur69evy9nZWREREUpJSVFAQICaNWsmV1dXzZgxQ9Ld5HOnTp306aefqnHjxurVq5cSEhJ08+ZN+fr6ysPDQx4eHqlOHy9dulQeHh5q0KCBNm/eLOn/Tk5HRETIzc1Nn376qZo1a6YuXbooOjr6vmufOnWq/Pz8ZG9vL0nKkyePAgMDVbp0aUnSwYMH1apVKzVv3lzt27fXmTNnJKU+LR0RESFnZ2dTLAEBAWrTpo2cnZ21fPly3bhxQ5MmTdLmzZs1derUR/2agCfm9OnTCgwMlGEY6V6/dOmSevXqpe+++y5V+7Rp03T+/HmFhYUpJCRE0dHRWrBgwbMIGQAAAAAA4KXwSAnlfv36ydvbW2FhYRo4cKB69+6tYsWKycvLS15eXvL09NTq1avl6uqqJUuWaNWqVVqwYIGioqLMnmPSpElq3ry53nvvPTVr1kyvvfaa+vXrJ0kaMGCA+vXrpxUrVmjUqFH6/PPPU9175swZnTx5UosWLdL69etVrFgxhYWFydfXV/b29poxY4bs7OxM/RcuXKiLFy9q1apVWrp0qTZs2KCtW7dKkg4cOCB/f3+tW7dOFy5c0K+//qqNGzeqSJEiCgkJUVBQkH7//XfTWHny5FFISIiGDBmiKVOmpFnX8ePH1b59e61Zs0YlS5bU5MmTM3wGUVFRunjxoipVqpSqvWTJkqpUqZISEhLUp08fDR06VKtWrZKXl5f69OnzwGd76dIlLViwQFOnTtW4ceOUJ08e9erVS87OzurWrdsD7weeptu3b6tfv373LY2zbNkyVa1aVR07dkzVfuTIETVr1kzZsmWTpaWl3nnnHa1fv/5phwwAAAAAAPDSeGDJi/+Ki4vT2bNn1ahRI0lS5cqVlTdvXp08eTJVv86dO2vXrl2aPXu2/v77byUmJur27dtmz3Ov5MXJkyfVqVMn1ahRQ7ly5VJcXJzCw8M1cOBAU99bt27p+vXrps+vv/66BgwYoKVLl+rUqVM6ePCgihUrluFcu3fvVsuWLWVlZaUcOXLIzc1NO3fulLOzs0qVKqVXX31V0t1EbkxMjKpUqaKvv/5akZGRev/9900lNCSpYcOGkqQ333wzVUz3FC9eXDVq1JAktWjRQn379s0wrnt/pp/RKc3Tp08rT548qlixoiSpadOm8vf3V2xsbIZjSlLt2rVlYWGh0qVLP/CENPCs+fv7q3Xr1ipTpkyGfXr06CFJCg4OTtVesWJFrV27Vo0bN5aNjY127Nihy5cvP9V4AQAAAAAAXiYPfULZMIw0CU7DMJScnJyqbezYsZo3b54cHBzUrVs32dnZZZgYvZ833nhDffv21aBBgxQbG6uUlBTZ2toqNDTU9L+lS5cqX758pnvCw8PVuXNnpaSkqHHjxmrYsOF9505JSclwPdmyZTO1W1hYyDAMFS9eXOvWrZObm5t+//13ffDBB6bxraysTH3TY239fzl8wzBM/dOTL18+OTo6Kjw8PFX7nj17NH78+DRx/zf2ezElJSWl6nNvTRnFCGSW+fPny9raWh988MEj3d+lSxeVKlVKXl5e6tixo0qXLi1bW9snHCUAAAAAAMDL66ETyrly5ZKjo6M2bNgg6W4N36tXr6pUqVKysrIyJS937Nihzp07q2nTprp48aIiIyPTTYCaw9XVVY6Ojvr222+VO3duFS9e3PRywB07duijjz5K1X/v3r2qXr262rRpozfffFM7duwwJVmtrKzSJL9r1qyplStXKjk5Wbdv31ZYWJjpFHF6fvzxRwUHB6tp06YaNmyYoqKiHngq+J5Tp07p6NGjkqTly5frvffeu2//zp07a+zYsbpy5Yqku2Uwxo4dq9dff11vvPGGoqOjdejQIUnS2rVr5eDgoHz58snOzk4nTpyQdPflZg/y7+8OyCwrVqzQ4cOH5e7uLl9fX925c0fu7u6KjIw06/6YmBh17NhRYWFhmj9/vnLnzn3fv04AAAAAAADAw3nokheSFBQUpOHDhys4OFg2NjYKDg6Wra2tqlWrpgEDBqhgwYL65JNP1L9/f+XJk0cFChSQk5OTIiIiHjnQ/v37q0OHDmrbtq1p/lmzZsnGxkYTJkxIddrWxcVFPXr0kJubm2xsbFSmTBnT3O+//758fX01a9YsU//WrVvr9OnTcnd3V2Jiopo3b67//e9/ppfa/VeLFi3Up08fubm5ydraWj169FCePHnMWkfevHk1adIknT17VmXKlFFAQMB9+7dp00aJiYnq1KmT6YR069at1apVK0l3Xz44atQo3b59W3nz5tWECRMkSR9//LH8/Py0fPlyNWjQ4IFxVaxYUZMnT9b48ePvW4YDeJqWLVtm+vneSyzv/fLIHJs3b9aWLVs0depU3bp1S2vXrlWvXr2eRqgAAAAAAAAvJQvjUepQ4JFERETIx8dHmzdvzuxQHlt8fPzdWtZhx3UtLjGzw8FzZF+Qj1n97iWUDxw4oMjISPn6+mrGjBkqXLiwqU9wcLCuX78uf39/SXfLu/j7++uPP/5QcnKyatWqZboGZFX79u1T1apVMzsMIEPsUTwP2KfI6tijeB6wT5HVsUefnXt5Pycnp1TlgO95pBPKT8IXX3xhKsnwb87Ozurdu3cmRJR5vL29dePGjTTtXl5eatOmTSZEBGS+okWL6sCBA5KkwoULp3tSuWfPnqk+W1tb68svvzR93rdv39MNEgAAAAAA4CWTaQnlr776KrOmzjRFixZN93TyvHnzMiEaAAAAAAAAAHg4D/1SPgAAAAAAAADAy4mEMgAAAAAAAADALCSUAQAAAAAAAABmybQayngxhA30SPdtj0BG4hOTlc3GKrPDAAAAAAAAwCPghDKAZ4pkMgAAAAAAwPOLhDIAAAAAAAAAwCwklAEAAAAAAAAAZiGhDAAAAAAAAAAwCwllAA8tPjE5s0MAAAAAAABAJrDO7ADwfHMbE6JrcYmZHQaesX1BPpkdAgAAAAAAADIBJ5QBAAAAAAAAAGYhoQwAAAAAAAAAMAsJZQAAAAAAAACAWUgoAwAAAAAAAADMQkIZAAAAAAAAAGAWEsoAAAAAAAAAALNYZ3YAz5ubN2/qq6++0t69e2VlZaU8efLIz89Pb7311iON5+3trR49eihnzpxatGiRRo8ercWLF+uVV16Rq6trhvcFBwdLknr27JmqfeHChZKkNm3amDX/4MGD5eXlpeLFi2vAgAH69ttvH2kdwL/9+OOPWrhwoSwsLOTo6KiAgAAVKFDAdH3lypWaM2eO6XNsbKwiIyO1bds2FSxYUDVr1lThwoVN1zt37qzmzZs/0zUAAAAAAAAgLRLKDyElJUVdunRRjRo1tHLlSllbW2vXrl3q0qWL1qxZIzs7u0ceu0KFCqpQoYIk6cCBA6pevfojjWNuIvme0aNHS5IiIiL0119/PdKcwL+Fh4fru+++U2hoqHLnzq3AwEBNnDhRI0eONPVp0aKFWrRoIUlKTExUu3bt5Ovrq4IFC+rkyZPKmzevQkNDM2kFAAAAAAAAyAgJ5Yewe/duXb58Wb169ZKl5d1qITVr1tSYMWO0c+dOfffdd0pJSVGpUqXk7++vkSNH6u+//1ZycrK6dOkiV1dXJSQkaPDgwQoPD1eRIkV0/fp109iTJ09Wt27dtHnzZu3atUuFChVS3bp1HyrGf59crl27turXr6/ff/9dhQoVUtu2bTVv3jxdunRJY8eOVfXq1U0npOfMmaPLly+re/fumjJlypN9cHipODk5af369bKxsVF8fLwiIyNVtGjRDPvPnDlT+fPnl5eXl6S7v1CxtLSUt7e3oqOj1bhxY3Xr1k1WVlbPagkAAAAAAADIAAnlh/Dnn3+qQoUKpmTyPfXq1dPu3bt1+vRpbdmyRblz59b48eP11ltvKTAwUDdv3pSXl5cqVaqkDRs2SJLWrVun06dPp/kz/lq1asnZ2VnVq1d/6GTyf129elXvv/++AgIC5O3trU2bNmnBggVasWKF5s6dm+oU9JAhQ+Tj40MyGU+EjY2NNm3apMGDB8vW1la9evVKt19UVJTmzJmjkJAQU1tycrJq166t/v37686dO/L19VWuXLnUoUOHZxQ9AAAAAAAAMkJC+SFYWlrKMIwMr5coUUK5c+eWJP3222+6c+eOli9fLkm6deuW/v77b+3Zs0etW7eWJBUvXlxVqlR5qjG/9957kqQiRYqoatWqkiQHBwfduHHjqc4LNGzYUA0bNtSSJUvUuXNnbdy4Mc0vY5YsWaIGDRrI0dHR1Pbhhx+afra1tVXHjh01b948EsoAAAAAAABZgOWDu+AeJycn/fnnn2mSyl9//bUMw1D27NlNbSkpKQoKClJoaKhCQ0O1ZMkS1a1bVxYWFkpJSTH1s7Z+ujl9W1tb08+UDMCzcObMGf3++++mz56enrpw4YJiYmLS9F27dq08PDxSta1cuTJVPW/DMJ76vxMAAAAAAACYh4TyQ3jnnXdUoEABTZ48WcnJyZKk7du3KyQkRFFRUan61qxZUwsXLpQkXb58Wc2bN9fFixf17rvvavXq1UpJSdH58+e1f//+NPNYWVmZxn9WrK2tlZSU9EznxIvpypUr6tOnj+nfRFhYmEqVKpXmpZUxMTE6e/ZsmlP6f//9tyZNmqTk5GTduXNH8+fPl4uLyzOLHwAAAAAAABkjofwQLCws9O233+rs2bNydXWVm5ubZs6cqRkzZqhAgQKp+vbo0UN37tyRq6ur2rdvr379+qlYsWJq27atcuXKpaZNm2ro0KEqXbp0mnlq1aqladOm6aeffrpvPNOnT1eVKlVM/1u1atUjr61AgQJycHCQt7f3I48BSHd/8dK1a1f5+PjI3d1da9as0ZQpU3T48GG5u7ub+p05c0aFChWSjY1Nqvt79OihvHnzys3NTc2bN1eVKlXUqlWrZ70MAAAAAAAApMPCuF9RYCAD8fHxCg8P18Cw47oWl5jZ4eAZ2xfkk9khmGXfvn2m2uFAVsU+RVbHHsXzgH2KrI49iucB+xRZHXv02bmX93NyclK2bNnSXKcwaRb2/fffa8WKFWna7e3tNXPmzEyICAAAAAAAAMDLjIRyFtahQwd16NAhs8MAAAAAAAAAAEnUUAYAAAAAAAAAmIkTyngsYQM90q2lghdbfGKystlYZXYYAAAAAAAAeMY4oQzgoZFMBgAAAAAAeDmRUAYAAAAAAAAAmIWEMgAAAAAAAADALCSUAQAAAAAAAABmIaEMAAAAAAAAADALCWUAZolPTM7sEAAAAAAAAJDJrDM7ADzf3MaE6FpcYmaHgWdgX5BPZocAAAAAAACATMYJZQAAAAAAAACAWUgoAwAAAAAAAADMQkIZAAAAAAAAAGAWEsoAAAAAAAAAALO8lAnlmzdvasSIEXJ1dZW7u7u8vb115MiRhx5n8eLFWr169VOI8NEcP35cZcqU0fr16zM7FAAAAAAAAAAvIOvMDuBZS0lJUZcuXVSjRg2tXLlS1tbW2rVrl7p06aI1a9bIzs7O7LEOHDig6tWrP8VoH05ISIgaN26sRYsWqXHjxpkdDl5CP/74oxYuXCgLCws5OjoqICBABQoUSNXn2LFjCggIUGxsrCwtLTVy5Eg5OTkpICBAe/fuNfWLjIxUoUKFFBYW9qyXAQAAAAAAgAy8dAnl3bt36/Lly+rVq5csLe8e0K5Zs6bGjBmjnTt3auHChZo3b54kyc/PT9WrV1ejRo3Up08fXb16VZLUvXt35ciRQ5s3b9auXbtUqFAhlStXToMHD9aFCxdkbW2tzz//XO+9956Cg4N14cIFHTt2TNeuXdNnn32mXbt26Y8//lDZsmU1YcIEWVhYaMaMGVq3bp2Sk5NVp04d9evXT+fPn9fHH38sOzs7ZcuWTd9//32G60pKStKqVas0f/58eXl56ezZsypWrJhpzQEBAbKyslLlypX1zz//aN68eTpz5oyGDx+u6OhoZc+eXUOHDlX58uWf7heAF1Z4eLi+++47hYaGKnfu3AoMDNTEiRM1cuRIU5/bt2+rc+fOGj16tOrVq6dNmzapb9+++umnnzRkyBBTv4iICH300UcaN25cZiwFAAAAAAAAGXjpEsp//vmnKlSoYEom31OvXj3t3r073Xs2btyoIkWKaMaMGfrnn3+0bNkyDRgwQM7Ozqpevbrq1q2r3r17q2bNmurYsaPOnTunNm3aaOXKlZLulqJYsmSJ9u/fr/bt2yssLEzFixeXi4uLjh07psuXLys8PFzLli2ThYWF+vXrp1WrVqlq1ao6deqUZs2apaJFi953XVu3bpWDg4NKlCihhg0batGiRerfv78SExPVv39/TZ8+XWXLllVAQIDpngEDBsjf31/ly5fXiRMn1L17d8pl4JE5OTlp/fr1srGxUXx8vCIjI9Ps2x07dsjR0VH16tWTJDVo0CDdvT106FB17NhR5cqVeyaxAwAAAAAAwDwvXQ1lS0tLGYbxUPdUqVJFmzZt0qeffqp9+/ape/fuafrs2rVLH3zwgSTJ0dFRlSpV0h9//CFJql27tqytreXg4KBChQrpzTfflLW1tQoXLqyYmBjt3LlThw4dkoeHh1q2bKnw8HCdOHFCklSgQIEHJpOlu+UuXF1dJUkuLi5asWKFEhISdPz4cRUoUEBly5aVJFOMcXFxCg8P18CBA+Xu7q4vvvhCt27d0vXr1x/q2QD/ZmNjo02bNum9997T3r175eHhker6qVOnVKhQIQ0aNEgeHh7q2LGjkpOTU/XZtm2bLl68KG9v72cZOgAAAAAAAMzw0p1QdnJy0oIFC2QYhiwsLEztX3/9tWxtbVMlmxMTEyVJxYsX17p167R9+3Zt2bJF3333ndatW5dq3P8mqQ3DMCXKbGxsTO3W1mkfeXJystq3b6+OHTtKkm7cuCErKytdv35d2bNnf+Carl27pl9++UXh4eH64YcfZBiGbty4oQ0bNujNN99USkpKmntSUlJka2ur0NBQU9ulS5eUL1++B84H3E/Dhg3VsGFDLVmyRJ07d9bGjRtNfxGQlJSkbdu26YcfflClSpW0adMm+fr6asuWLbK1tZUkzZ07V76+vrKyssrMZQAAAAAAACAdL90J5XfeeUcFChTQ5MmTTQnf7du3KyQkRNWrV9e5c+cUHx+v6Oho7du3T9LdF40FBweradOmGjZsmKKiohQbGysrKyvTGDVr1tSyZcskSefOndP+/ftVuXJls2KqWbOmQkNDFRcXp6SkpIcuPbFq1SrVrFlTv/zyizZv3qwtW7aoa9euWrx4sd544w3duHFDx44dkyTTC85y586t4sWLmxLKO3bs0EcffWT2nMB/nTlzRr///rvps6enpy5cuKCYmBhTm729vd544w1VqlRJ0t3kc3Jyss6dOydJioqK0h9//KEmTZo82+ABAAAAAABglpfuhLKFhYW+/fZbjRkzRq6urrK2tpadnZ1mzJih8uXLq169emrWrJmKFCmiqlWrSpJatGihPn36yM3NTdbW1urRo4fy5MmjWrVq6euvv1bu3Lk1ePBg+fv7KyQkRJIUEBAge3t7s2JydnbWX3/9pQ8//FDJycmqW7euWrZsqfPnz5t1f0hIiD7//PNUbW3bttWsWbN07tw5jRs3TgMGDJClpaVKlChhOvUcFBSk4cOHa9asWbKxsTG9IBB4FFeuXFGfPn20cuVK5c+fX2FhYSpVqpTs7OxMfd577z0FBgYqPDxcTk5O2rt3rywsLExlXfbv368KFSooZ86cmbUMAAAAAAAA3IeF8bAFhfFcSUlJ0fjx49WjRw/lzJlTc+bMUWRkpPz8/B5r3Pj4+Ls1mMOO61pc4hOKFlnZviCfB/ZZsGCBFixYICsrK9nb28vf31/R0dEaMmSI6TT83r17NW7cON2+fVu2trYaNGiQ3nnnHUnSrFmzdOrUKY0ePfrJxLxvn+kXQ0BWxT5FVscexfOAfYqsjj2K5wH7FFkde/TZuZf3c3JyUrZs2dJcf+lOKD+vfv/9d40aNSrdazNmzFDhwoXTvWZpaal8+fLpgw8+kI2NjYoUKfLEknXAf7Vt21Zt27ZN1ebo6JiqVne1atW0dOnSdO//+OOPn2p8AAAAAAAAeDwklJ8T77zzTqqk3MPw9fWVr6/vE44IAAAAAAAAwMvmpXspHwAAAAAAAADg0ZBQBgAAAAAAAACYhYQyAAAAAAAAAMAs1FDGYwkb6JHu2x7x4olPTFY2G6vMDgMAAAAAAACZiBPKAMxCMhkAAAAAAAAklAEAAAAAAAAAZiGhDAAAAAAAAAAwCwllAAAAAAAAAIBZSCgDWVR8YnJmhwAAAAAAAACkYp3ZAeD55jYmRNfiEjM7jBfSviCfzA4BAAAAAAAASIUTygAAAAAAAAAAs5BQBgAAAAAAAACYhYQyAAAAAAAAAMAsJJQBAAAAAAAAAGYhoQwAAAAAAAAAMIt1ZgdgruPHj8vNzU2TJk1S48aNn+jYV69e1dixY3Xw4EHlyJFD9vb2+uKLL1S+fPknOk9GunfvroiICN26dUtXr15VsWLFJEl9+/ZV3bp1zR7Hz89Pu3btUt68eZWSkiIbGxsNGzZMlSpVelqhAwAAAAAAAHiJPDcJ5ZCQEDVu3FiLFi16ognlO3fuyMfHR56engoKCpKFhYV27NihTp06acGCBXrjjTee2FwZmTJliiRp9+7dmjx5subNm/fIY/Xq1UseHh6SpE2bNmnUqFFatmzZE4kTWUtoaKhmz54tCwsL5ciRQ4MHD1aFChVS9Zk3b56mTZumggULSpJeeeUVLViwQIZh6JtvvtG6deuUI0cOValSRQMHDlS2bNkyYykAAAAAAAB4TjwXCeWkpCStWrVK8+fPl5eXl86ePav58+fL3t5enTt3lnQ3kerq6qqKFSuqb9++iomJUenSpbV371798ssvGY69du1aFShQwDSOJNWuXVseHh6aNWuWvvzySzk7O8vZ2Vm///67JOnLL79U+fLldebMGQ0fPlzR0dHKnj27hg4dqvLly8vPz0+5cuXSkSNHFBkZqe7du8vT0/Oh133w4EGNHj1a8fHxsrOz08iRI/X666+bfX9sbKwpkfjfZLWfn5+qV6+us2fPKiUlRX369JEkDRw4UHXr1pWLi8tDx4tn5+TJkwoKClJISIjs7e21bds29ezZU1u3bk3V78CBA/Lz85Obm1uq9pCQEG3dulXLli1Tnjx5NGXKFH3zzTcaMGDAM1wFAAAAAAAAnjfPRQ3lrVu3ysHBQSVKlFDDhg21aNEiubu7a82aNZKkmzdvav/+/Xr//fc1evRoNW3aVGFhYWrSpIkiIyPvO/bhw4fTnOqUpGrVqunw4cOmz/ny5dPKlSvVq1cvU9JtwIAB6tevn1asWKFRo0bp888/N/W/dOmSFixYoKlTp2rcuHEPveaEhAT16dNHQ4cO1apVq+Tl5WVK+t7PpEmT5O7urkaNGmno0KH66KOP7tvf09NTq1evlmEYunXrlnbu3KmGDRs+dLx4tmxtbRUQECB7e3tJkpOTk65evaqEhIRU/Q4cOKDVq1erRYsW6ty5s44dOyZJOnLkiBo2bKg8efJIkho1aqT169c/20UAAAAAAADgufNcJJRDQkLk6uoqSXJxcdGKFSv05ptvKiEhQWfOnNGmTZtUv3592draaseOHXJ3d5ck/e9//zMlzDJiYWGh5OTkNO2JiYmpPn/44YeSJGdnZ0VGRurSpUsKDw/XwIED5e7uri+++EK3bt3S9evXJd095WxhYaHSpUsrOjr6odd8+vRp5cmTRxUrVpQkNW3aVGfPnlVsbOx97+vVq5dCQ0O1YcMGLVmyRL1799a5c+cy7O/o6KgiRYpo79692rBhg+rVqydbW9uHjhfPVtGiRfX+++9LkgzD0JgxY+Ts7Jzqu7t165beeOMNffLJJ1q5cqU8PT3VpUsXxcXFqWLFitq8ebOioqKUkpKilStX6vLly5m0GgAAAAAAADwvsnzJi2vXrumXX35ReHi4fvjhBxmGoRs3bmjDhg1q3ry51q5dqwMHDqhLly6SJCsrKxmGYfb4FStW1MKFC9O0HzhwINXJZWvr/3tUKSkpSk5Olq2trUJDQ03tly5dUr58+STJVIvWwsLiodb77zn+yzCMdJPfGSlfvryKFSumI0eOKH/+/Kmey78T5vdOKV+4cEE9e/Z8pHiROW7duiU/Pz9dunRJs2bNSnUtZ86cmj17tumzi4uLpk6dqsOHD6tFixaKjIxU+/btlTNnTn344YeysbF51uEDAAAAAADgOZPlTyivWrVKNWvW1C+//KLNmzdry5Yt6tq1qxYvXiw3NzetXbtWZ86c0TvvvCNJqlWrlsLCwiRJ27Zt040bN+47vouLi27fvq3p06ebEq6//vqrQkJCUtVVvldeY+PGjSpZsqSKFCmi4sWLmxLKO3bseGB5iYfxxhtvKDo6WocOHZJ0t9azg4ODKWFtjvPnzysiIkJly5aVnZ2dzp07p/j4eEVHR2vfvn2mfk2aNNHOnTt19epVVapU6YmtAU/XhQsX5OXlJSsrK/3www9pTuOfP38+zQseDcOQtbW1oqOj5erqqrCwMC1evFhvvvnmQ9XnBgAAAAAAwMspy59QDgkJSVWbWJLatm2rWbNm6datW7Kzs1PlypVNJ4EHDRqkAQMGaMmSJSpbtuwDS17Y2tpq7ty5GjdunJo0aSILCws5ODhozpw5KlmypKnf/v37tWzZMuXIkUNjx46VJAUFBWn48OGaNWuWbGxsNGHChEc+kZxeXBMmTNCoUaN0+/Zt5c2bVxMmTHjgfZMmTdLcuXMlSXfu3NGAAQNUvHhxSVK9evXUrFkzFSlSRFWrVjXdkz17dlWuXFmlS5d+IrHj6YuOjla7du3k4eGhHj16pNsnR44c+uabb1SpUiVVrFhR27Zt0+3bt1WxYkXt2bNHX331lZYsWSILCwtNnz49zYv7AAAAAAAAgP/K8gnle6eN/61AgQL6448/JEk//PBDqmvr16/XkCFD9Oabb+rIkSM6fvz4A+ews7PTmDFj7tvniy++UNGiRVO1lSxZMs0JUEmmhPM9916E9iA1atRQjRo1TJ+rVKmipUuXmnVvevP+18iRI9O0GYahuLg4/fnnn+rfv7/ZcyFzLVy4UBcvXtTGjRu1ceNGU/uMGTPk6+urGTNmqHDhwvrmm2/k7++vxMRE5cqVS1OmTJGtra3q1KmjvXv3qnnz5kpJSVHDhg3VoUOHzFsQAAAAAAAAngtZPqH8sF5//XX16dNHlpaWypYtm0aNGqW1a9dq+vTp6fb/dw3kp+lJxRAYGKjffvstTbuTk5NGjx790HEdPnxYH3/8sbp3765ChQo99P3IHN26dVO3bt3Svfbv/VS3bl3VrVs33X6ff/55mtP/AAAAAAAAwP28cAnlevXqqV69eqna3nrrLbm4uDzymJs3b37csOTi4vJYMdwzYMCAxx7j3+6VPwAAAAAAAACAB8nyL+UDAAAAAAAAAGQNJJQBAAAAAAAAAGYhoQwAAAAAAAAAMMsLV0MZz1bYQA9ly5Yts8N4IcUnJiubjVVmhwEAAAAAAACYcEIZyKJIJgMAAAAAACCrIaEMAAAAAAAAADALCWUAAAAAAAAAgFlIKAMAAAAAAAAAzEJCGXiK4hOTMzsEAAAAAAAA4ImxzuwA8HxzGxOia3GJmR1GlrUvyCezQwAAAAAAAACeGE4oAwAAAAAAAADMQkIZAAAAAAAAAGAWEsoAAAAAAAAAALOQUAYAAAAAAAAAmIWEMgAAAAAAAADALA9MKEdERKhMmTLy9/dP1X706FGVKVNGISEhDz3p4sWLtXr1akmSn5/fI43xX97e3tq9e/djj3NPbGysPv30U0lSZGSkunTp8sTG/reJEycqODjY9Pmff/5R27Zt5e7urtatW+vo0aNPZV4AAAAAAAAAeFhmnVDOly+ftm/fruTkZFPb2rVrlT9//kea9MCBA0pISHike5+VmJgY/fXXX5KkwoULa+bMmU90/NjYWA0aNEjfffddqvYhQ4aoS5cuCg0N1WeffaYBAwY80XmRtYSGhqp58+Zyd3eXl5eXDh8+nGHfiRMnauTIkana1q9fLw8PD7m6usrX11fXr19/2iEDAAAAAADgJWZWQvmVV15RuXLltHfvXlPbjh07VKtWLUnSli1b5O7uLjc3N3366ae6evWqJMnZ2VnffPONPvjgAzVr1kzh4eH67bfftHnzZk2aNEnbt2+XJG3dulUffPCB6tevr8WLF0uSdu7cKQ8PD3l4eKhjx46Kiooye1F16tTRqFGj1KJFC3l6eurcuXOSpHXr1unDDz9U8+bN1bhxY9N6jh49qlatWsnNzU3t2rXTpUuXFBAQoMuXL6t79+6KiIiQs7Ozrl+/rtq1aysxMVGSdPz4cbm5uUmSVq5cqZYtW8rd3V2DBg1SfHz8fWP8+eefVbx4cXXs2DFVe6tWrfTee+9JksqUKaOLFy/ed5zg4GANHDhQHh4eqlevnlasWKEBAwaoSZMm+uyzz2QYhiRp2rRpcnFxkZubm8aOHavk5GRFRESoRYsW6tevn1xdXdW+fXtFR0eb/ZzxeE6ePKmgoCDNmjVLoaGh6tatm3r27Jmm36VLl9SrV680v3w4fPiwRo0apUmTJmn16tUqXry4JkyY8KzCBwAAAAAAwEvI7BrKTZs21fr16yVJhw4dUpkyZWRjY6Nr167J399fU6ZMUVhYmN5+++1Upyjz5cunZcuWycvLS9OnT1etWrXk7OysXr16qW7dupKkhIQELV26VNOnTzclxL799lsNHz5cISEhql+/vv7880+zF3XlyhW9++67WrlypapVq6b58+crJSVFixYt0rRp07Rq1Sp16dJFs2fPliT17dtXn376qcLCwuTi4qK5c+dqyJAhsre315QpU0zj2tnZqWLFivr1118lSWvWrFHz5s31999/a8mSJVq0aJFCQ0NVoEAB09gZadGihXx9fWVlZZWq3cPDw9Q2adIkNWzY8IHrPX78uJYsWaKgoCANGjRIXbp00erVq/Xnn3/q2LFj2rZtmzZv3qyQkBCtWLFCZ86c0aJFiyRJf/31lzp27KjVq1crT548CgsLM/s54/HY2toqICBA9vb2kiQnJyddvXo1zen9ZcuWqWrVqml++bBq1Sp5enqqaNGikqSePXs+tdIsAAAAAAAAgPQQCeX69evrl19+UUpKitatW6emTZtKknLkyKGKFSuaklqtW7fWrl27TPfdSxqXKlUqw9OvDRo0kIWFhUqVKmX6k/0GDRqoR48eGjlypEqWLKk6deo81ML+PW9MTIwsLS01ZcoU/frrr5o4caJWrFihuLg4RUVF6cqVK6pfv74kqW3btvctM+Hu7q41a9ZIunvi2c3NTbt379aZM2f04Ycfyt3dXT///LNOnjz5UPH+m2EYCgwM1B9//KFBgwY9sH/t2rVlbW0tBwcHFSpUSG+++aasra1VuHBhxcTEaNeuXWrWrJmyZ88ua2treXp6aufOnZKkAgUKqHz58qmeFZ6NokWL6v3335d09zsfM2aMnJ2dZWtrm6pfjx491L59+zS/fDh9+rSSk5PVrVs3NW/eXCNGjNArr7zyrMIHAAAAAADAS8jshHKuXLlUtmxZ7du3T7t27TKVu0hJSUnVzzAMJSUlmT5ny5ZNkmRhYZHh2PcSZf/u06FDB82bN0/FihVTUFCQpk6dam6oaeY1DENxcXHy9PRURESEqlWrJm9vb0mSjY1Nqvvi4+NNJTLS4+zsrL1792rv3r169dVX9eqrryo5OVlNmzZVaGioQkNDtXTp0jQvMTRXUlKS+vbtq8OHD+uHH35Q7ty5H3jPv9dgbW2d5vp/v6N780j/95yk/3tWeLZu3bql3r176+zZswoICDD7vqSkJG3ZskUjR47UypUrVahQIQ0ZMuQpRgoAAAAAAICXndkJZelu2YuvvvpKTk5OpsTlnTt39McffygiIkKStHjxYtWoUeO+41hZWaV6wV96WrVqpbi4OHXo0EEdOnR4qJIX6Tl9+rQsLS3VtWtX1axZU7/88ouSk5OVO3duvfrqq9qxY4ekuy9JmzhxoqytrVMlxu+xtbVV3bp19eWXX6p58+aSpBo1amjjxo26du2aDMPQ8OHDNXfu3EeKMzAwUDdv3tR3331nVjLZHDVr1tSaNWt0584dJSUlafny5apZs+YTGRuP58KFC/Ly8pKVlZV++OEH5cmTx+x77e3tVadOHRUqVEiWlpby8PDQwYMHn16wAAAAAAAAeOmlPc56H/Xr19fgwYPVu3dvU1vBggU1cuRI9ejRQ4mJiXJwcNDo0aPvO06tWrX09ddf3zdh2qdPH/n5+cna2lrZsmXTiBEjHibUNMqWLaty5cqpadOmyp49u6pVq6YLFy5IkoKCgjR8+HCNGzdOdnZ2pv93cHCQt7e3xowZk2osd3d3rVq1Sk2aNDGNfa8sQUpKisqVKydfX9+HjjEqKkrz589X0aJF1apVK1N7aGjoY6z87vd29OhReXp6KikpSXXr1jW9fBCZJzo6Wu3atZOHh4d69Ojx0Pc3btxYgYGB6tq1q+zs7LRhwwZVqFDhKUQKAAAAAAAA3GVhUOMAjyA+Pl7h4eEaGHZc1+ISMzucLGtfkE+G16ZOnapJkyapdOnSqdpnzJghX19fzZgxQ4ULFza1BwcH6/r166nKqSxYsEALFixQSkqK6Zc5/77nZbdv3z5VrVo1s8MA7ot9iqyOPYrnAfsUWR17FM8D9imyOvbos3Mv7+fk5JSqXO49D3VCOTPduXNHrVu3Tvdar1691KBBg2cc0YN5e3vrxo0badq9vLzUpk0bs8f5/vvvtWLFijTt9vb2mjlz5mPFiMzTrVs3devWLd1r6Z1K79mzZ5q2tm3bqm3btk88NgAAAAAAACA9z01COXv27I9d+uFZmzdv3hMZ514daQAAAAAAAADITA/1Uj4AAAAAAAAAwMuLhDIAAAAAAAAAwCzPTckLZE1hAz3SLc6Nu+ITk5XNxiqzwwAAAAAAAACeCE4oA08RyWQAAAAAAAC8SEgoAwAAAAAAAADMQkIZAAAAAAAAAGAWEsoAAAAAAAAAALOQUAYeID4xObNDAAAAAAAAALIE68wOAM83tzEhuhaXmNlhPFX7gnwyOwQAAAAAAAAgS+CEMgAAAAAAAADALCSUAQAAAAAAAABmIaEMAAAAAAAAADALCWUAAAAAAAAAgFlIKAMAAAAAAAAAzEJCGQAAAAAAAABgFrMTyjdv3tSIESPk6uoqd3d3eXt768iRI4806cCBA3X+/PmHvi82NlaffvrpI80pSQcPHlT79u3VvHlzubq6avjw4bpz584jj5eeh41xwIABCgkJMX3et2+fPD095e7urvbt2z/Sc8KzZxiG/Pz8NHv27DTXVq5cKXd3d9P/nJ2d9dZbb+nq1au6c+eOBg4cKDc3NzVr1kwDBw584nsSAAAAAAAAeFLMSiinpKSoS5cuyps3r1auXKnQ0FB1795dXbp00fXr1x960t27d8swjIe+LyYmRn/99ddD3ydJf/31l3r06KE+ffpo1apVWrlypQzD0NChQx9pvMeNMTIyUl27dtVPP/2Uqr1fv34aPXq0QkND5ebmpoCAgCcaH568f/75R+3bt9e6devSvd6iRQuFhoYqNDRUy5YtU6FChTR06FAVLFhQU6dOVXJyskJDQ7Vq1SrFx8dr+vTpz3gFAAAAAAAAgHmszem0e/duXb58Wb169ZKl5d0cdM2aNTVmzBilpKRo2rRpWrVqlaysrFS7dm3169dPFy9eVI8ePVSqVCkdPXpUBQoU0MSJE7VkyRJdvnxZvr6+mj9/vnbt2qU5c+bozp07io+PV0BAgKpVq6ajR4/K399fd+7cUd68eTV+/HgFBATo8uXL6t69uwIDA9WnTx9dvXpVktS9e3c1aNAgwzXMnj1brVu3VqVKle4u3Npa/fr1044dOyRJV69e1eDBg3XhwgVZW1vr888/13vvvafg4GBJUs+ePSVJzs7O+uGHH7Rnzx5t375dMTExOnfunGrXrq3hw4eninHKlCkZxhMWFqYGDRooX758praEhAT17t1bZcuWlSSVKVNGP/74432/Gz8/P+XIkUP79u1TbGysBg0apNDQUP31119q2LCh/Pz8lJKSoi+//FI7d+6UhYWFmjdvLl9fX+3evVvTp09X9uzZ9c8//6hMmTIaP368bG1t7zsnUps/f748PDzk4ODwwL4zZ85U/vz55eXlJUmqVq2aihQpYvp3Va5cOZ04ceKpxgsAAAAAAAA8KrNOKP/555+qUKGCKel1T7169RQeHq7NmzcrJCREK1as0JkzZ7Ro0SJJd08Fd+zYUatXr1aePHkUFhYmX19f2dvba8aMGcqbN68WLVpkSkh36dLFVDKgb9+++vTTTxUWFiYXFxfNnTtXQ4YMkb29vaZMmaKNGzeqSJEiCgkJUVBQkH7//ff7ruHo0aOqWLFiqrZcuXKpcePGkqRRo0apZs2aCgsL06RJkzRo0CBTsjojBw4c0KRJk7Rq1Spt2bJFx44dSxXj/Xz88cdq1apVqjZbW1u5u7tLunsqfPLkyWrYsOF9x5Gky5cva9WqVerVq5cGDhyoESNGaOXKlVqyZIliY2O1cOFCXbx4UatWrdLSpUu1YcMGbd261bQGf39/rVu3ThcuXNCvv/76wPmQmr+/v1q0aPHAflFRUZozZ44GDRpkaqtTp45KlCghSTp//rzmzp2rJk2aPK1QAQAAAAAAgMdi1gllS0vLDEtU7Nq1S82aNVP27NklSZ6enlq5cqXq1aunAgUKqHz58pKkUqVKKSYmJs24U6ZM0ebNm3Xq1Cnt2bNHlpaWioqK0pUrV1S/fn1JUtu2bSVJERERpnurVKmir7/+WpGRkXr//ffVvXv3+67BwsLivtd37dplKi/h6OioSpUq6Y8//rjvPVWqVFGuXLlM98TExOiVV1657z3mSEhIkJ+fn5KSkvTJJ588sP97770nSXJwcFCpUqVUoEABSVK+fPkUExOj3bt3q2XLlrKyslKOHDnk5uamnTt3ytnZWaVKldKrr74qSSpZsmSa7whPzpIlS9SgQQM5OjqmuRYeHq4ePXqoXbt2pn0PAAAAAAAAZDVmnVB2cnLSn3/+mSap/PXXX2vnzp1p+iclJUmSsmXLZmqzsLBIc39cXJw8PT0VERGhatWqydvbW5JkY2OTql98fLzOnTuXqq148eJat26d3Nzc9Pvvv+uDDz64b11mJycnHT58OFXbzZs31bVrVyUkJKS51zAMJScnp4k7MTHR9POD1vco4uLi9PHHHyspKUlTp05N8yzS8+8+1tZpf0eQkpKS6vO9tUlPZw1I39q1a+Xh4ZGmfc2aNerUqZO++OILde3aNRMiAwAAAAAAAMxjVkL5nXfeUYECBTR58mRTInL79u0KCQlR+/bttWbNGt25c0dJSUlavny5atased/xrKyslJycrNOnT8vS0lJdu3ZVzZo19csvvyg5OVm5c+fWq6++aqpvHBoaqokTJ8ra2tqUrP7xxx8VHByspk2batiwYYqKilJsbGyGc3bo0EELFy7UoUOHJN1NDI8dO1a5cuWSra2tatasqWXLlkmSzp07p/3796ty5cqys7Mz1bQ9dOiQrly5ct+1/TvGR9GvXz+9/vrrmjhx4hOrZVyzZk2tXLlSycnJun37tsLCwlSjRo0nMjbMExMTo7Nnz6pKlSqp2n/66ScFBARo9uzZcnNzy6ToAAAAAAAAAPOYVfLCwsJC3377rcaMGSNXV1dZW1vLzs5OM2bMUPny5XXx4kV5enoqKSlJdevWVbt27XTp0qUMx3v//ffl6+urmTNnqly5cmratKmyZ8+uatWq6cKFC5KkoKAgDR8+XOPGjZOdnZ3p/x0cHOTt7a2pU6eqT58+cnNzk7W1tXr06KE8efJkOGeZMmUUFBSk0aNH6/bt20pKStK7776rIUOGSJIGDx4sf39/hYSESJICAgJkb28vFxcXrV+/Xi4uLnrrrbdMJTwyUqBAAVOM8+bNM+fxmvz555/6+eef9eabb5pq8trb22vmzJkPNc5/tW7dWqdPn5a7u7sSExPVvHlz/e9//9Pu3bsfa1xk7PDhwxoyZIhCQ0MlSWfOnFGhQoXSnDj/+uuvZRiGaR9K0ttvv61hw4Y903gBAAAAAAAAc1gY1DjAI4iPj1d4eLgGhh3XtbjEB9/wHNsX5JPZIeAR7du3T1WrVs3sMID7Yp8iq2OP4nnAPkVWxx7F84B9iqyOPfrs3Mv7OTk5pSqXe49ZJ5SfF4GBgfrtt9/StDs5OWn06NHPNJY7d+6odevW6V7r1auXGjRoYPZYWWldAAAAAAAAAF5eL1RCecCAAZkdgkn27NlN5Q4eV1ZaFwAAAAAAAICXl1kv5QMAAAAAAAAAgIQyAAAAAAAAAMAsL1TJCzx7YQM90i3O/SKJT0xWNhurzA4DAAAAAAAAyHScUAYegGQyAAAAAAAAcBcJZQAAAAAAAACAWUgoAwAAAAAAAADMQkIZAAAAAAAAAGAWEsp4bsQnJmd2CAAAAAAAAPh/7d15fE3X/v/x98loCCKGGBqlaNqiparCVa6khgwnMVZEo+2lLVXpQFsqpb4kxtwSXG59Db20jdJURBFDi9IYqkpTl5qiYggSzYRM5/z+8HV+0gSnWs5JvZ6Ph8fDXmfvtT97Zz3WI313WQf3NCdbF4DyzTgpXhl5hXflXnumDbwr9wEAAAAAAABQNlYoAwAAAAAAAACsQqAMAAAAAAAAALAKgTIAAAAAAAAAwCoEygAAAAAAAAAAqxAoAwAAAAAAAACsYvNA+eeff5a3t7eSkpL+1H537typ8PDwEm1paWny9fWVJO3fv1/Tpk2TJG3atEkzZ86UJPn6+iotLa1E2++Rk5OjV155RZKUnp6uF1988Y88RilpaWlq3ry5QkJCFBISIqPRKF9fX8XGxt7y2uvfR0hIyJ9aFwAAAAAAAIC/PidbFxAfH69u3bopLi5O3bp1u2v3PXLkiDIyMiRJfn5+8vPzK/F5WW3WyMrK0sGDByVJnp6emj9//h8v9jdq166thIQEy3F6erq6deumwMBANW7c+IbX7dq1y/L366//q9i8ebNiYmJUUFAgb29vRUdHy83NrcQ5GzZsUGxsrBwcHFS1alVFRUWpQYMGysnJ0ZgxY3Ts2DGZTCb16NFDL730ko2eBAAAAAAAALBPNl2hXFRUpFWrVumNN97QgQMH9Msvv2jSpElasGCB5ZyIiAitX79eZ8+e1bPPPiuj0agRI0aoY8eOt33f7OxsxcbG6quvvtLcuXMVHx+vUaNGlTjnWltaWpplNXBISIgeffRRLViwQLm5uYqIiFC/fv3UuXNnvfXWWzKbzZo4caLOnTunYcOGlVgRfeHCBb388ssyGo3q2bOntm7dKkmaNWuWIiMjFR4eLl9fX82dO/d3P8/58+dlNptVuXJlFRUVKTIyUv369ZOfn58GDx6sK1euaOLEiZKkvn37SpK8vb0lSZcvX9aIESMUFBQko9GolStX3u5rtanMzEyNHj1as2bNUlJSkry8vDR9+vQS51y5ckVvvfWWZs+erYSEBPn5+Vney8yZM+Xp6anVq1drxYoViouL0969e23xKAAAAAAAAIDdsmmgvHnzZtWrV0+NGjXS008/rbi4OIWEhOjLL7+UJOXm5ur777/X3//+d0VFRcnf31+JiYnq3r270tPTb/u+VatWVUREhHx9fTV06NCbnnvfffcpISFBCQkJGjZsmJo2bapnn31Wmzdv1sMPP6xly5YpKSlJP/zwg3766SdFRkaqdu3amjNnTol+JkyYIB8fHyUmJio2NlbvvvuuLly4IEk6dOiQFixYoOXLl+vDDz9Udnb2TWs6d+6cQkJC1L17d7Vt21YzZszQ7NmzVadOHe3du1fOzs5atmyZNmzYoPz8fG3ZskWRkZGSpOXLl5foa9asWapevbpWr16tjz76SLNmzbKssC5Ptm3bphYtWqhhw4aSpP79+ysxMVFms9lyTnFxscxms3JyciRJeXl5cnV1lSSNGTNG77zzjqSrAX1BQYGqVKlydx8CAAAAAAAAsHM23fIiPj5eQUFBkqSAgACNHDlSr7/+ugoKCnTixAnt3btXnTt3louLi7Zv365JkyZJkrp06aKqVavetG8Hh9JZudlslsFguK1aDx48qClTpmjJkiVydXVVUFCQ9u/fr8WLF+vYsWP69ddfdenSJbm7u5d5/Y4dOyyrYb28vPTYY49p3759kqS2bdvKxcVFNWrUkLu7u3Jycm76fNe2vDCZTJo8ebIOHTokHx8fSVKbNm3k7u6ujz/+WMeOHVNqaqouXbp0w7527Nih6OhoSZKHh4f8/Py0a9cuPfTQQ7fzmmzm7NmzqlOnjuW4Tp06ys3NVV5enmXbi8qVK2v8+PEKDQ2Vu7u7TCaTPv30U0mSwWCQk5OTRo4cqaSkJHXp0kWNGjWyybMAAAAAAAAA9spmK5QzMjK0detWLVy4UL6+voqMjFR2drbWr1+v4OBgrVmzRmvWrFFwcLAkydHRscRq01upWrVqqZW+mZmZqlat2u+uNTMzUxEREYqOjla9evUkSUuWLNHUqVPl4eGhZ599Vo0bN75pfb/9zGw2q7i4WJIsq2Slq8Gmtc/p4OCgt99+WxkZGVq4cKGkq18wOHLkSFWoUEG9evVSmzZtbruu8sRkMpXZfv3/WDh06JDmzJmjNWvWaNu2bRoyZIiGDx9e4h1Mnz5dO3bsUFZWVqlV5gAAAAAAAMC9zmaB8qpVq+Tj46OtW7fqq6++0tdff60hQ4Zo2bJlMhqNWrNmjU6cOKEnnnhCktS+fXslJiZKkrZs2XLLbSGaNGmirKwsyypgk8mk5cuXq127dpKuBtRFRUW3rLOwsFCvvfaawsPD1bZtW0v79u3b1a9fPwUHB8tgMOjgwYMymUxycnIqs18fHx+tWLFCknTy5El9//33atmy5a1f1C04OTnp7bff1rx583T+/HklJyfL399fvXv3Vs2aNbV7925LQFzWM19fV2ZmpjZt2qQnn3zyD9d1t9WtW1fnz5+3HKenp6tatWqqVKmSpW3btm16/PHH1aBBA0nSgAEDdPjwYV28eFHffPONZRuVypUrKzAwUAcOHLi7DwEAAAAAAADYOZsFyvHx8QoLCyvRFhYWpv379+vSpUuqXr26unXrZtmi4t1339X69evVo0cPrV279pZbXjg6OmrGjBmKjo5WSEiI/P395ejoqFdffVWS9Oijj2rfvn2lvrjtt9atW6e9e/cqISFBPXr0UEhIiKZMmaLnnntOs2fPVs+ePTV+/Hi1atVKaWlpqlGjhurVq6fw8PAS/YwZM0Y7duyQ0WjUK6+8ookTJ6p27dq/97WVqWPHjmrZsqVmzJihvn376ssvv1SPHj00fPhwtWzZUmlpaZIkPz8/hYSEKD8/33LtsGHD9Ouvv8poNOrZZ5/VkCFD1KxZsz+lrrupQ4cO2rdvn1JTUyVJcXFx8vPzK3HOI488ot27d1v2rt64caPuu+8+eXh4aO3atZozZ47MZrMKCgq0du1ayzYiAAAAAAAAAK4ymH/PPhI29J///Eft27dXkyZN9NNPP+m9995TfHy8rcu6Z+Xn5yslJUWjE39WRl7hXbnnnmkDb/r5li1bFBMTo8LCQjVo0EBTpkzRyZMnFRkZqYSEBEnSxx9/rKVLl8rZ2VnVqlXT2LFj1bRpU2VnZ2vcuHE6fPiwDAaD/Pz8FBERUeZe3Cg/9uzZo9atW9u6DOCmGKewd4xRlAeMU9g7xijKA8Yp7B1j9O65lvs1b968xFa919j0S/l+j/vvv19vvvmmHBwc5OrqqgkTJmjNmjX697//Xeb51wLE8ui7777ThAkTyvzsww8/lKen512uqHzo1KmTOnXqVKLN3d29xFgYMGCABgwYUOraqlWr6oMPPrjjNQIAAAAAAADlWbkJlMsKC5s1a6aAgAAbVXTnPPHEE+U6EAcAAAAAAADw18S/5wcAAAAAAAAAWIVAGQAAAAAAAABglXKz5QXsU+LoXmVuzn0n5BcWy9XZ8a7cCwAAAAAAAEBprFBGuUGYDAAAAAAAANgWgTIAAAAAAAAAwCoEygAAAAAAAAAAqxAoAwAAAAAAAACsQqAMAAAAAAAAALAKgTLsXn5hsa1LAAAAAAAAACDJydYFoHwzTopXRl7hHb3HnmkD72j/AAAAAAAAAKzDCmUAAAAAAAAAgFUIlAEAAAAAAAAAViFQBgAAAAAAAABYhUAZAAAAAAAAAGAVAmUAAAAAAAAAgFXu+UA5LS1N3t7eGjt2bIn2//73v/L29lZ8fLxV/aSnp+vFF1+UJH311VdatGjRTc+Pj4/XqFGjbnpOdna2RowYIaPRKKPRqEGDBik1NVWSdPLkSb377ru3rCs8PNyq+suzzZs3y2g0qlu3boqIiFBubm6Jz1euXKmQkBDLH19fXzVr1kwXLlyQJH388cfq2bOn/P39NXLkSBUUFNjiMQAAAAAAAAC7d88HypLk7u6ub775RsXFxZa2NWvWyMPDw+o+PD09NX/+fEnSTz/9VCrUvB0xMTF68MEHlZiYqMTERPXs2VNvvPGGJOn06dM6efLkLfvYtWvXH67DnmVmZmr06NGaNWuWkpKS5OXlpenTp5c4p0ePHkpISFBCQoJWrFihWrVq6b333lPNmjW1fv16LV26VIsWLdKXX36p/Px8LV682DYPAwAAAAAAANg5AmVJlStX1sMPP6zdu3db2rZv36727dtLkpYuXaq+ffsqKChIRqNRR48elST5+vrq9ddfV7du3bR//375+vrqyJEjiouLU1xcnD7//HOlp6dr0KBBeuaZZ9S5c+dSYefNXLhwQfn5+TKZTJKkgIAADR8+XJI0ceJEpaSkaPz48SoqKlJkZKT69esnPz8/DR48WFeuXNHEiRMlSX379pUkeXt7W/q+foX0lClTFBwcrJ49e2r27Nm3+xptYtu2bWrRooUaNmwoSerfv78SExNlNpvLPH/+/Pny8PBQaGiopKurl//xj3/I3d1dDg4OGj9+vEJCQu5W+QAAAAAAAEC5QqD8f/z9/ZWUlCRJ2r9/v7y9veXs7Kzc3Fxt3LhRS5Ys0erVq/X000/rk08+sVzXsWNHJSUlWVYzN2nSRKGhoQoNDVXv3r21evVqBQUF6bPPPtOqVav0ySefKDMz06qahg4dqs8//1zt27fX66+/rs8//1x/+9vfJEmRkZFq3ry5xo0bp71798rZ2VnLli3Thg0blJ+fry1btigyMlKStHz58hve49SpU9q6datWrVqluLg4paamKj8//7beoS2cPXtWderUsRzXqVNHubm5ysvLK3VuZmamFi1aVGKrkNTUVGVkZGjQoEEyGo2aNWuWqlSpcldqBwAAAAAAAMobAuX/07lzZ23dulUmk0lr166Vv7+/JMnNzU0xMTH68ssvFRMTo6+//lqXLl2yXPfYY4/dtN9Bgwapbt26WrBggaKiolRYWKjLly9bVVPz5s21adMmxcbGqmHDhlq4cKHCwsJUVFRU4rw2bdooLCxMH3/8saKiopSamlqixpvx9PSUq6urQkNDtXjxYr3++utydXW16lp7cG319m85OJQe2p999pn8/Pzk5eVlaSsqKtL27ds1c+ZMff7558rKytIHH3xwx+oFAAAAAAAAyjMC5f/j5uamhx56SHv27NGOHTss212cOXNG/fr1U05Ojjp27KiePXuW2E7hVuHr5MmTtWTJEtWrV09Dhw5V9erVb7gdw/XMZrPGjRun4uJiPfnkk3r99de1atUqXbx4UQcOHChx7qZNmzRy5EhVqFBBvXr1Ups2bW54j2vt10JpJycnLV++XK+99pp+/fVXhYaG6vjx47esz17UrVtX58+ftxynp6erWrVqqlSpUqlz16xZo169epVoq127trp06SI3Nze5uLgoODhYP/zww50uGwAAAAAAACiXCJSv4+/vr5iYGDVv3lxOTk6SpEqVKun+++/X888/r8cee0xbt24t8eV9ZXF0dLQEttu3b9egQYPk7++vM2fOKD09/Yaraq9nMBh09OhRLViwwHL+uXPnVFRUpAYNGpS4R3Jysvz9/dW7d2/VrFlTu3fvttR4/XnVq1fX4cOHZTab9dVXX0mSDhw4oGeffVZt2rTRO++8o8aNG5erQLlDhw7at2+fUlNTJUlxcXHy8/MrdV5WVpZ++eUXtWrVqkR7t27dtG7dOl25ckVms1kbN25UixYt7kbpAAAAAAAAQLnjZOsC7Ennzp01ZswYvfbaa5Y2Z2dnmUwmBQQEyMXFRY8++qgOHz58036uhbM1a9bUyy+/rLfffltVq1ZVjRo11Lx5c6WlpVlVzz//+U9NmjRJfn5+qlixoqpUqaKYmBi5u7urcePGysnJ0VtvvaXBgwdr5MiRWrdunVxcXNSyZUvLPfz8/BQSEqL4+HiNGDFCQ4YMUc2aNdW6dWtdvHhRjzzyiFq2bKmgoCBVrFhRDz/8sDp27Hj7L/Euq1GjhiZNmqSIiAgVFhaqQYMGmjJlin788UdFRkYqISFBknTixAnVqlVLzs7OJa4PCwtTVlaWevXqpeLiYjVr1szyZYUAAAAAAAAASjKYrdl/AfiN/Px8paSkaHTiz8rIK7yj99ozbeAd7R9/XXv27FHr1q1tXQZwU4xT2DvGKMoDxinsHWMU5QHjFPaOMXr3XMv9mjdvXuZ2v6xQtrERI0boyJEjpdp9fX1LrJQGAAAAAAAAAFsjULaxmJgYW5cAAAAAAAAAAFbhS/kAAAAAAAAAAFYhUAYAAAAAAAAAWIUtL/CHJI7uVebm3H+m/MJiuTo73tF7AAAAAAAAALg1VijD7hEmAwAAAAAAAPaBQBkAAAAAAAAAYBUCZQAAAAAAAACAVQiUAQAAAAAAAABWIVCGTeUXFtu6BAAAAAAAAABWcrJ1ASjfjJPilZFXeNvX75k28E+sBgAAAAAAAMCdxAplAAAAAAAAAIBVCJQBAAAAAAAAAFYhUAYAAAAAAAAAWIVAGQAAAAAAAABgFQJlAAAAAAAAAIBVCJTtRFFRkebOnSt/f38FBASoW7dumjdvnsxm8x/uOzw8XDt37vwTqgQAAAAAAABwL3OydQG4avz48bpw4YKWLVumqlWrKjc3V8OGDVOVKlU0YMAAW5dnM5s3b1ZMTIwKCgrk7e2t6Ohoubm5lThn8uTJWrdunapVqyZJatSokWbMmGGDagEAAAAAAIC/NgJlO3D27FmtWrVKW7duVdWqVSVJbm5uGjt2rI4cOaILFy5o7NixOnv2rAwGg0aMGKH27dtr1qxZSk9P14kTJ3Tq1Cn17dtXQ4cOVUFBgcaMGaOUlBTVr19fFy9etNzrww8/1Nq1a1VcXKwOHTrorbfe0qlTpzR48GBVr15drq6uWrx4sY3eREmZmZkaPXq0Pv30UzVs2FDTpk3T9OnT9f7775c4b+/evfrnP/+pxx9/3DaFAgAAAAAAAPcItrywA/v371fjxo0tK2yvady4sbp166aoqCj17t1b8fHxmjt3rsaOHavc3FxJ0qFDh7RgwQItX75cH374obKzs7VkyRJJ0tq1axUZGalffvlFkrR161alpKRoxYoVWrlypdLT07Vq1SpJ0vHjxzVt2jS7CZMladu2bWrRooUaNmwoSerfv78SExNLbANSUFCgAwcOaOHChQoODtbw4cN1+vRpG1UMAAAAAAAA/LWxQtlOGAwGy9/XrVunuXPnymQyycXFRWlpaTp27JhiY2MlXd1v+eTJk5Kktm3bysXFRTVq1JC7u7tycnK0a9cu9evXT5LUsGFDtWrVSpKUnJys/fv3q1evXpKkK1euqF69emrdurVq1Kih++67724+8i2dPXtWderUsRzXqVNHubm5ysvLs2x7kZ6eLh8fH7355ptq1KiRFixYoFdeeUVffPFFiXcKAAAAAAAA4I8jULYDzZo109GjR5Wbmys3Nzd1795d3bt3V1pamgYOHCiTyaSPPvpI7u7ukq6GqDVr1tTGjRvl6upq6cdgMMhsNstgMMhkMlnanZyu/piLi4v13HPP6YUXXpAkZWdny9HRURcvXlSFChXu3gNb6fpnuJ6Dw/9fWO/l5aX58+dbjgcNGqR//etfSktLk5eX1x2vEQAAAAAAALiXsOWFHahfv76Cg4P1zjvvKDs7W9LV8Hfz5s1ycHCQj4+PPvnkE0nSkSNHFBwcrMuXL9+wv3bt2mn16tUymUw6deqUvv/+e0mSj4+PEhISlJeXp6KiIg0bNkxJSUl3/gFvU926dXX+/HnLcXp6uqpVq6ZKlSpZ2g4ePKiVK1eWuM5sNsvZ2flulQkAAAAAAADcM1ihbCfef/99LVq0SAMHDpTZbFZBQYFatmyp+fPnq1KlSho7dqyMRqMkaerUqZYtH8oSFhamw4cPy9/fX/Xr19eDDz4oSfL19dXBgwf1zDPPqLi4WE899ZR69uypU6dO3ZVn/L06dOigKVOmKDU1VQ0bNlRcXJz8/PxKnOPg4KCoqCi1bt1aXl5e+uSTT+Tt7V1iqwwAAAAAAAAAfw6D+fpvOAOslJ+fr5SUFI1O/FkZeYW33c+eaQNv+vmWLVsUExOjwsJCNWjQQFOmTNHJkycVGRmphIQESVJCQoLmz5+v4uJi1alTR1FRUapXr95t14S/jj179qh169a2LgO4KcYp7B1jFOUB4xT2jjGK8oBxCnvHGL17ruV+zZs3L7Hd7jWsUIZd69Spkzp16lSizd3d3RImS1JISIhCQkLudmkAAAAAAADAPYc9lAEAAAAAAAAAViFQBgAAAAAAAABYhUAZAAAAAAAAAGAVAmUAAAAAAAAAgFX4Uj78IYmje5X5bY/Wyi8slquz459YEQAAAAAAAIA7hUAZt8VsNkuSCgoK/nBf+flFf7gP4Eby8/NtXQJwS4xT2DvGKMoDxinsHWMU5QHjFPaOMXp3XMv7ruV/v2Uw3+gT4CZycnL0888/27oMAAAAAAAAAHfAgw8+qCpVqpRqJ1DGbTGZTMrLy5Ozs7MMBoOtywEAAAAAAADwJzCbzSosLFTlypXl4FD6K/gIlAEAAAAAAAAAVikdMQMAAAAAAAAAUAYCZQAAAAAAAACAVQiUAQAAAAAAAABWIVAGAAAAAAAAAFiFQBkAAAAAAAAAYBUCZQAAAAAAAACAVQiUAQAAAAAAAABWIVDG75aYmKiAgAB16dJFH3/8sa3LAco0cOBABQYGKiQkRCEhIdq3b5+tSwIkSbm5uQoKClJaWpok6dtvv5XRaFTXrl31wQcf2Lg6oPQYHT16tLp27WqZTzds2GDjCnGvmz17tgIDAxUYGKipU6dKYi6FfSlrjDKXwt7MnDlTAQEBCgwM1KJFiyQxl8K+lDVGmUvth5OtC0D5kp6erg8++EDx8fFycXFRaGio2rZtqyZNmti6NMDCbDbr2LFj2rx5s5ycmOZgP/bt26fIyEilpqZKkq5cuaJ3331XS5YsUd26dfXyyy9ry5Yt6tSpk20LxT3rt2NUklJSUrR06VLVrl3bdoUB/+fbb7/Vtm3b9MUXX8hgMGjw4MFavXq1pk+fzlwKu1DWGN2wYQNzKezKrl27tGPHDq1atUpFRUUKCAhQu3bt+L0UdqOsMdqpUyfmUjvCCmX8Lt9++618fHzk7u6uSpUqqVu3blq3bp2tywJKOHbsmAwGg1588UUFBwdr6dKlti4JkCR99tlnGjdunOUXoP379+v++++Xl5eXnJycZDQamVNhU78do5cuXdLp06f13nvvyWg0KjY2ViaTycZV4l5Wq1YtjRo1Si4uLnJ2dlbjxo2VmprKXAq7UdYYPX36NHMp7MqTTz6p//znP3JyclJGRoaKi4uVnZ3NXAq7UdYYdXV1ZS61IwTK+F3OnTunWrVqWY5r166t9PR0G1YElJadna127dppzpw5Wrx4seLi4rR9+3ZblwUoKipKTzzxhOWYORX25rdjNCMjQz4+PoqOjtZnn32m7777TitWrLBhhbjXNW3aVC1btpQkpaamas2aNTIYDMylsBtljdGnnnqKuRR2x9nZWbGxsQoMDFS7du34vRR257djtLi4mLnUjhAo43cxm82l2gwGgw0qAW6sVatWmjp1qipVqiQPDw/16dNHW7ZssXVZQCnMqbB3Xl5emjNnjmrUqKGKFSsqPDyc+RR24fDhw/rHP/6hd955Rw0aNCj1OXMpbO36MfrAAw8wl8IuRUREKDk5WWfOnCmx3dU1zKWwtevHaHJyMnOpHSFQxu/i6empCxcuWI7PnTvH3jWwO999952Sk5Mtx2azmb2UYZeYU2HvDh06pKSkJMsx8ynswZ49e/T8889rxIgR6tmzJ3Mp7M5vxyhzKezN0aNH9d///leSVLFiRXXt2lU7d+5kLoXdKGuMrlmzhrnUjhAo43dp3769kpOTlZmZqcuXL2v9+vXq2LGjrcsCSsjJydHUqVOVn5+v3NxcffHFF+rSpYutywJKeeyxx3T8+HGdOHFCxcXFWr16NXMq7IrZbFZ0dLSysrJUWFioZcuWMZ/Cps6cOaNhw4Zp+vTpCgwMlMRcCvtS1hhlLoW9SUtLU2RkpAoKClRQUKBNmzYpNDSUuRR2o6wx2qZNG+ZSO0KUj9/F09NTb7zxhgYOHKjCwkL16dNHjz76qK3LAkro3Lmz9u3bpx49eshkMiksLEytWrWydVlAKa6urpo8ebKGDx+u/Px8derUSd27d7d1WYDFQw89pJdeekn9+/dXUVGRunbtqqCgIFuXhXvYggULlJ+fr8mTJ1vaQkNDmUthN240RplLYU86depk+e8lR0dHde3aVYGBgfLw8GAuhV0oa4y++uqrql69OnOpnTCYy9rAEQAAAAAAAACA32DLCwAAAAAAAACAVQiUAQAAAAAAAABWIVAGAAAAAAAAAFiFQBkAAAAAAAAAYBUCZQAAAAAAAACAVQiUAQAAgOt4e3vLaDQqJCTE8mfMmDG33d/+/fs1duzYP7HCkjZt2qSJEyfesf5v5OTJkxo+fPhdv+8fkZaWplatWtm6DAAAgHLNydYFAAAAAPbmo48+koeHx5/S15EjR5Senv6n9FUWPz8/+fn53bH+b+T06dM6fvz4Xb8vAAAAbItAGQAAALDS0aNHFRUVpV9//VXFxcUKDw9Xnz59ZDKZFB0drX379ikvL09ms1kTJ05UvXr1FBsbq5ycHI0ePVo9evTQhAkTtHr1aknSzp07LcezZs3SDz/8oHPnzsnb21vTp0/X3LlztX79eplMJtWvX1/jxo2Tp6dniZri4+OVlJSkf//73woPD1ezZs20Y8cOZWRkaODAgcrIyNCuXbt0+fJlzZgxQ97e3goPD1fjxo2VkpKiixcvKiQkRBEREZKkjRs3avbs2SouLpabm5tGjx6tRx99tER9TZs21Y8//qj09HQNGjRICxYs0Lx587Rx40bl5+fr8uXLeuedd9SlSxfNmjVLp06d0vnz53Xq1Cl5eHjogw8+kKenp44fP66xY8cqMzNTDg4OGjp0qAICApSenq7/+Z//0ZkzZ1RYWKjAwEANGTKkxHMfP35coaGh+uabb+Ti4qLi4mJ17txZCxcuVG5urqZNm6aCggKdP39e7du3V3R0dInrZ82apYsXL1pWj19/nJOTo6ioKP38888qLCxUu3bt9Pbbb8vJyUmxsbHasGGDnJ2dVb16dU2aNEm1a9e+U0MOAADA7hAoAwAAAL/x3HPPycHh/+8Ot3DhQlWrVk0RERGaOnWqmjVrppycHPXr109NmjSR2WzWuXPntGzZMjk4OOjDDz/U/PnzNW/ePEVERCgpKUmTJk3Szp07b3rfU6dOafXq1XJyctLKlSv1888/a/ny5XJyctKyZcsUGRmp+fPn37KPlStXat++fXrmmWc0d+5cjRo1StHR0Vq6dKkmTJgg6eoK408//VSXL1/WM888oxYtWqhBgwYaN26c4uLi5OXlpeTkZL3yyitat25dqfquheELFizQqVOn9O2332rp0qWqUKGCvvzyS8XGxqpLly6SpO+++04rV66Um5ubhgwZomXLlikiIkJvvvmm+vTpowEDBujMmTMKDw9Xx44d9dZbb+n555+Xr6+v8vPz9eKLL6pBgwYKCAiwPGejRo3UtGlTffXVV+revbu2bdum+vXrq0mTJnrzzTcVERGhtm3bKi8vT35+fkpJSZG7u7tVP//o6Gg1a9ZMkydPVnFxsUaNGqVFixYpKChIH330kZKTk+Xi4qKFCxdq//79evrpp63qFwAA4K+AQBkAAAD4jbK2vDhy5Ih++eUXvfvuu5a2K1eu6MCBAwoLC1O1atUUFxenkydPaufOnapcufLvvm/Lli3l5HT1V/Svv/5aP/74o3r37i1JMplMunz58i37uBbienl5SZKeeuopSVKDBg20a9cuy3n9+vWTs7OznJ2dLYHsAw88IB8fH8u17dq1k4eHh1JSUkrVd7369etrypQpSkxM1IkTJywrta958skn5ebmJkl65JFHlJWVpV9//VUHDx5U3759JUl169bVxo0bdenSJe3evVtZWVmaOXOmJOnSpUs6ePBgiUBZkvr27asvvvhC3bt3V3x8vKWvyZMna+vWrZo3b56OHTumK1eu6NKlS1YHyps3b9aPP/6oFStWSLr6c5YkT09PPfTQQ+rZs6c6duyojh07ql27dlb1CQAA8FdBoAwAAABYobi4WFWrVlVCQoKl7cKFC6pSpYo2b96sqKgovfDCC/Lz89MDDzygVatWlerDYDDIbDZbjgsLC0t8XqlSJcvfTSaTBg8erLCwMElSQUGBsrKyblmni4tLiWNnZ+cyz7s+GDabzXJwcChR2/WfFRUVlarvej/99JNeeeUVPf/88/rb3/6mNm3aaPz48ZbPK1SoYPn7tXdw7f4Gg8Hy2bFjx1SrVi2ZzWbFxcWpYsWKkqTMzEy5urqWum/37t01adIkHT16VLt379bkyZMlSQMGDNBDDz2kp556Sv7+/tq3b1+pZ7vZz8JkMmnmzJlq3LixJCk7O1sGg0EODg5aunSpfvzxRyUnJys6Olpt27ZVZGRkme8FAADgr8jh1qcAAAAAaNSokVxdXS2B8pkzZxQUFKSUlBRt375dnTt3VlhYmFq0aKGNGzequLhYkuTo6GgJZD08PHT69GllZGTIbDZr48aNN7xfhw4dtGLFCuXm5kqSZs6cqbfffvtPe55Vq1bJZDIpKytLa9eula+vr3x8fLR9+3adPHlSkpScnKwzZ87oscceK3W9o6OjJYTdvXu3mjdvrhdeeEFPPvmkNm3aZHn+G3Fzc1OzZs20cuVKSVffZ//+/XXlyhW1bNlSixYtknQ1zO3fv782bdpUqg9XV1cFBgZq1KhR6tq1qypWrKisrCylpKRo5MiR6tq1q9LT0/XLL7/IZDKVuLZ69er66aefZDabdenSJW3bts3yWYcOHbR48WKZzWYVFBRo6NChWrp0qQ4ePKigoCA1btxYL7/8sp5//nkdOnTI+pcOAADwF8AKZQAAAMAKLi4u+te//qWoqCj97//+r4qKivTaa6+pdevWcnd318iRI2U0GuXo6KgnnnjC8mV6rVq10owZMzRs2DDNmTNHoaGh6t27t2rVqqW///3vN7xf3759lZ6ermeeeUYGg0F169a1rMD9M1y5ckV9+vRRXl6ewsLCLFs3jBs3Tq+++qqKi4tVoUIFzZs3T1WqVCl1fdOmTeXo6Kg+ffpo3rx5Wr9+vQICAuTs7Kx27dopKyvLEobfSExMjMaPH68lS5bIYDAoKipKtWrV0vTp0zVhwgQZjUYVFBQoKChIwcHBZfbRt29fLV26VO+//74kqVq1anrppZfUs2dPubu7q3r16nr88cd14sQJy1YekhQcHKxvvvlGXbt2laenp1q1amVZsTxmzBhFRUXJaDSqsLBQ7du31+DBg+Xs7Cx/f3/17t1blSpVUoUKFVidDAAA7jkGc1n/rg0AAADAX1Z4eLgGDBig7t2727oUAAAAlDNseQEAAAAAAAAAsAorlAEAAAAAAAAAVmGFMgAAAAAAAADAKgTKAAAAAAAAAACrECgDAAAAAAAAAKxCoAwAAAAAAAAAsAqBMgAAAAAAAADAKgTKAAAAAAAAAACr/D91AM3YTyDT3AAAAABJRU5ErkJggg==" >

Based on the above feature importance, I suggest the bank to design customer retention strategies with the following points in mind:

  1. The bank should reach out to customers for retention if their transaction amounts and/or counts were relatively below the average level in the last 12 months, since these two features are the most likely to be associated with churning later. Some strategies for retaining these customers could be offering a credit card package with lower interest rates, or asking if they would be interested in upgrading their membership level if they have been a loyal customers (say for 2 years).
  2. Relatedly, monitoring the magnitude of changes in the transaction amount and/or count from Q4 to Q1 may also provide signs that a customer is using less frequently the credit card services from the bank and thus be likely to churn. In fact, since Q4 coincides with the Christmas holiday in late December and that should be when consumption levels should rise, if we observe that a customer's usage of the bank's credit cards is not increasing significantly, then this may be a sign that the customer is not interested in using the bank's credit card service anymore in the future.